Location:
Search - n queens
Search list
Description: AN EXPERIMENTAL TABU SEARCH CODE FOR THE N-QUEENS PROBLEM
Platform: |
Size: 14120 |
Author: guochengbao111@126.com |
Hits:
Description: 求N皇后问题回溯算法--Asks the N queens question recollection algorithm
Platform: |
Size: 2048 |
Author: |
Hits:
Description: 在一个N×N的国际象棋棋盘中摆N个皇后,使这N个皇后不能互相被对方吃掉。-in an N N chess board wavers N Queen so that the N-Queens that can be eaten by the other side.
Platform: |
Size: 22528 |
Author: 李秉肇 |
Hits:
Description: 在一个N×N的国际象棋棋盘中摆N个皇后,使这N个皇后不能互相被对方吃掉。-Put on N queens in a N multiply N chessboard,preventing each queen to be knocked over
Platform: |
Size: 22528 |
Author: 罗敏秀 |
Hits:
Description: N-Queen solver written in java with excellent Graphical user interface.
Platform: |
Size: 4096 |
Author: sandeepan1986 |
Hits:
Description: 快速 n—皇后 问题解决算法,是本人见过的代码中最快的,利用位操作-Fast n-Queens problem-solving algorithm
Platform: |
Size: 674816 |
Author: li |
Hits:
Description: 使用vc++实现数据结构中的n皇后问题的实现,使用递归算法完成此项操作基本比较简单-Using vc++ data structure, the realization of n-queens problem, using the basic recursive algorithm is relatively simple to complete this operation
Platform: |
Size: 1024 |
Author: jidean |
Hits:
Description: 软件架构的N皇后问题,这个算法效率比较高-Software architecture of the N queens problem, this algorithm is more efficient
Platform: |
Size: 1222656 |
Author: 杜佳佳 |
Hits:
Description: n-queens graphical,是算法分析与设计里N皇后的c+=代码,程序将问题进行了图形化-n-queens graphical
Platform: |
Size: 1024 |
Author: 汪尔芳 |
Hits:
Description: pascal语言使用迭代法求解N皇后问题的源码-pascal language use iteration method to solve N-Queens problem code
Platform: |
Size: 182272 |
Author: 李毅 |
Hits:
Description: N皇后问题算法,N皇后问题是关于国际象棋的一个著名问题,本算法给出了其中一种解法-N Queens Algorithm
Platform: |
Size: 92160 |
Author: duanyuxing |
Hits:
Description: N皇后问题回溯算法,算法质量高,参加ACM的同学,喜欢C算法的同学可以研究一下-N-Queens problem backtracking algorithm, the algorithm of high quality, to participate in the ACM students, students like C algorithm can be studied
Platform: |
Size: 1024 |
Author: 杨龙飞 |
Hits:
Description: PHP implementation of the N-Queens problem
Platform: |
Size: 3129344 |
Author: hellsm0th89 |
Hits:
Description: N皇后问题的所有解输出,代码简单易懂,且短小快速-N-queens problem all solutions of output, the code is easy to understand, and the short and fast
Platform: |
Size: 1024 |
Author: 郭涛 |
Hits:
Description: 利用c语言实现的高效N皇后问题,并输出计算时间。-Use c language to achieve efficient N queens problem, and outputs the computation time
Platform: |
Size: 1024 |
Author: sj |
Hits:
Description: n-queens implementation in MATLAB
Platform: |
Size: 44032 |
Author: Akbar Siahi |
Hits:
Description: 八皇后问题是一个古老而著名的问题,是回溯算法的经典问题。该问题是十九世纪著名的数学家高斯在1850年提出的:在8*8的国际象棋棋盘上,安放8个皇后,要求没有一个皇后能够“吃掉”任何其它一个皇后,即任意两个皇后不能处于同一行,同一列或者同一条对角线上,求解有多少种摆法。
高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法得到结论,有92中摆法。
本实验拓展了N皇后问题,即皇后个数由用户输入。
-Eight queens problem is an old and well-known problem, is backtracking algorithms classic problem. The problem is that the nineteenth century, the famous mathematician Gauss in 1850: On the chess board 8* 8, placed eight queens, requires no queen can eat any other a queen, that any two Queen can not be in the same row or the same column on the same diagonal, solving many kinds of pendulum method.
There are 76 kinds of programs Gaussian think. 1854 in Berlin, different chess magazine published 40 kinds of different solutions, and later was obtained using graph theory conclusion, there are 92 in the pendulum method.
This experiment extends the N queens problem, namely the number entered by the user Queens.
Platform: |
Size: 1024 |
Author: 林斌 |
Hits:
Description: N皇后问题,可以输入N的值,并输出每一种N的情况和步骤。-N queens problem, you can enter the value of N, and N outputs each situation and steps.
Platform: |
Size: 98304 |
Author: 李元月 |
Hits:
Description: 优化的N皇后算法,输入皇后的个数N,输出三个解,算法的时间复杂度为O(nlgn)-Optimized N queens algorithm, enter the number of the Queen N, output three solutions, the time complexity of the algorithm is O (nlgn)
Platform: |
Size: 10240 |
Author: jbzh |
Hits:
Description: 使用回溯法求N皇后问题,是又经典的8皇后问题延伸而来-Seeking N Queens backtracking law, it is another classic 8-queens problem extends from
Platform: |
Size: 1024 |
Author: 李泽文 |
Hits:
« 12
3
4
5
6
7
8
9
10
...
19
»