Introduction - If you have any usage issues, please Google them yourself
Face and facial feature detection plays an important role in various applications such as human computer interaction, video surveillance,
face tracking, and face recognition. Efficient face and facial feature detection algorithms are required for applying to those tasks.
This paper presents the algorithms for all types of face images in the presence of several image conditions. There are two main stages. In
the first stage, the faces are detected from an original image by using Canny edge detection and our proposed average face templates.
Second, a proposed neural visual model (NVM) is used to recognize all possibilities of facial feature positions. Input parameters are
obtained from the positions of facial features and the face characteristics that are low sensitive to intensity change. Finally, to improve
the results, image dilation is applied for removing some irrelevant regions. Additionally, the algorithms can be extended to rotational
invariance problem by using Radon tran