Introduction - If you have any usage issues, please Google them yourself
Simulated annealing (SA) is a probabilistic technique for approximating the global optimum of a given function. Specifically, it is a metaheuristic to approximate global optimization in a large search space. It is often used when the search space is discrete (e.g., all tours that visit a given set of cities). For problems where finding the precise global optimum is less important than finding an acceptable global optimum in a fixed amount of time, simulated annealing may be preferable to alternatives such as brute-force search or gradient descent.