Introduction - If you have any usage issues, please Google them yourself
The speech signal for the particular isolated word can be viewed as the one generated using the sequential generating probabilistic model known as hidden Markov
model (HMM). Consider there are n states in the HMM. The particular isolated
speech signal is divided into finite number of frames. Every frame of the speech
signal is assumed to be generated from any one of the n states. Each state is modeled as the multivariate Gaussian density function with the specified mean vector
and the covariance matrix. Let the speech segment for the particular isolated word
is represented as vector S. The vector S is divided into finite number of frames
(say M). The i th frame is represented as Si . Every frame is generated by any of the n
states with the specified probability computed using the corresponding multivariate
Gaussian density model.