Introduction - If you have any usage issues, please Google them yourself
In this paper, k-means algorithm is used as the background, and information entropy related knowledge is introduced to realize full-automatic image segmentation. However, when the Gaussian mixture model is used to analyze the image data, there will be some over-fitting phenomenon, resulting in that we cannot get the expected number of clusters. In this paper, a reasonable merging criterion is designed to simplify the model and effectively eliminate the over-fitting phenomenon, so that the final clustering number is in line with the expectation. A reasonable criterion is designed to improve the automatic image segmentation method and make the segmentation result more optimized.