CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - 分岔,matlab
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - 分岔,matlab - List
[
Documents
]
混沌分岔图像
DL : 1
数模作业,MATLAB绘制出来的
Update
: 2009-05-19
Size
: 387.5kb
Publisher
:
liubin0314@qq.com
[
Other
]
分岔分析工具
DL : 0
Hopf分岔分析的matlab工具箱
Update
: 2011-05-01
Size
: 3.34mb
Publisher
:
hosa521
[
Other
]
DDE-biftool
DL : 0
这是国外用的研究分岔的完整的M程序,很有用,属再版的-This is a study abroad with a complete bifurcation of M procedures, very useful, is a reprint of
Update
: 2025-02-19
Size
: 1.16mb
Publisher
:
赵清春
[
Other
]
chashi-bif-1
DL : 0
这是一个研究叉式分岔的程序,可供大家做分岔图时参考。-This is a study of forklift bifurcation procedure for everyone to do bifurcation diagram reference.
Update
: 2025-02-19
Size
: 12kb
Publisher
:
赵清春
[
Other
]
dan
DL : 0
这是一个单摆模型的分岔行为的分岔图,是我珍藏的,供大家参考。 -This is a simple pendulum model of the bifurcation behavior of the bifurcation diagram, is my collection, for your reference.
Update
: 2025-02-19
Size
: 76kb
Publisher
:
赵清春
[
matlab
]
duffing
DL : 1
duffing混沌振子的实现代码,以及绘制duffing系统分岔图的源代码,matlab程序。-duffing chaotic oscillator realization of the code, as well as the bifurcation diagram drawing duffing system source code, matlab procedures.
Update
: 2025-02-19
Size
: 1kb
Publisher
:
chris
[
Windows Develop
]
logistic
DL : 0
一个画一种Logistic Map 分岔图(bifurcation diagram)的程序,运行后,你们可以看到它与常规的非线性系统的行为不一样。该映射可以用如下方程表述: xn=1-a*x2n-1 其中,a――[0,2]. -Logistic Map a painting of a bifurcation diagram (bifurcation diagram) procedures, running, you can see it with the conventional non-linear system behavior not the same. The mapping equation can be expressed as follows: xn = 1-a* x2n-1 of them, a- [0,2].
Update
: 2025-02-19
Size
: 1kb
Publisher
:
潘水洋
[
matlab
]
duffing
DL : 1
duffing分岔图,计算连续duffing方程Lyapunov指数的程序,比较好用-duffing bifurcation diagram, duffing equation for calculating the Lyapunov index procedure, comparative ease of use
Update
: 2025-02-19
Size
: 1kb
Publisher
:
崔
[
matlab
]
bifurcation2dmap
DL : 0
混沌与分岔的小程序,是用matlab编写的,挺有用的-Chaos and Bifurcation of small procedures, are prepared using matlab, very usefull
Update
: 2025-02-19
Size
: 1kb
Publisher
:
wangjishun
[
matlab
]
josephson
DL : 1
基于Matlab对约瑟夫森结(Josephson Junction)RCSJ模型的交直流I-V特性及非线性混沌现象进行数值模拟。通过计算机数值模拟得到该模型的非线性微分方程数值解,研究了RCSJ模型中各参量对约瑟夫森结的影响,进而简要分析其I-V特性和非线性混沌现象的产生机理,绘制出约瑟夫森结的交直流I-V特性曲线、非线性微分方程的相图及因其高度非线性而引起的通过倍周期分岔和阵发性原理进入混沌状态的分岔图。还给出庞加莱截面及功率谱。-Matlab based on the Josephson junction (Josephson Junction) RCSJ model AC and DC IV characteristics and non-linear numerical simulation of chaotic phenomena. Through computer simulation model by the numerical solution of nonlinear differential equations to study the RCSJ model parameters on the impact of Josephson junction, and a brief analysis of the IV characteristics and the emergence of the phenomenon of non-linear chaotic mechanism, drawn Josephson junction IV characteristic curve of AC-DC, non-linear differential equations and the phase diagram because of its highly nonlinear arising through period-doubling bifurcation and chaotic state of paroxysmal principle of access to the bifurcation diagram. Poincare cross-section and was also given power spectrum.
Update
: 2025-02-19
Size
: 19.9mb
Publisher
:
Ellison
[
File Format
]
josephson(word)
DL : 0
摘要:本文基于Matlab对约瑟夫森结(Josephson Junction)RCSJ模型的交直流I-V特性及非线性混沌现象进行数值模拟。通过计算机数值模拟得到该模型的非线性微分方程数值解,研究了RCSJ模型中各参量对约瑟夫森结的影响,进而简要分析其I-V特性和非线性混沌现象的产生机理,绘制出约瑟夫森结的交直流I-V特性曲线、非线性微分方程的相图及因其高度非线性而引起的通过倍周期分岔和阵发性原理进入混沌状态的分岔图。 关键词:超导器件 隧道效应 约瑟夫森结 弱耦合 倍周期分岔 庞加莱截面 混沌 -Abstract: Matlab-based Josephson junction on the (Josephson Junction) RCSJ model AC and DC IV characteristics and non-linear numerical simulation of chaotic phenomena. Through computer simulation model by the numerical solution of nonlinear differential equations to study the RCSJ model parameters on the impact of Josephson junction, and a brief analysis of the IV characteristics and the emergence of the phenomenon of non-linear chaotic mechanism, drawn Josephson junction IV characteristic curve of AC-DC, non-linear differential equations and the phase diagram because of its highly nonlinear arising through period-doubling bifurcation and chaotic state of paroxysmal principle of access to the bifurcation diagram. Key words: superconducting devices tunnel effect Josephson junction weakly coupled period-doubling bifurcation chaotic Poincare section
Update
: 2025-02-19
Size
: 189kb
Publisher
:
Ellison
[
Other
]
de-fenchatu
DL : 0
三维混沌的分岔图程序,对分岔图的调节混有帮助-dsfadgdaf
Update
: 2025-02-19
Size
: 4kb
Publisher
:
gxl555
[
2D Graphic
]
fractalpattern-MATLAB
DL : 0
应用MATLAB软件编程绘制庞加莱截面图,生成皮诺曲线的过程(动画) ,分形地图,离散的蔡氏电路, 抛物线-k*x^2+(k+1)*x混沌分岔行为等。-fractal pattern
Update
: 2025-02-19
Size
: 3kb
Publisher
:
zhy
[
matlab
]
lorenzfencha
DL : 0
洛伦兹分岔的matlab程序,和混沌电路实现思路-Lorenz bifurcation of the matlab program, and the chaotic circuit ideas! ! ! ! ! ! ! ! ! ! ! ! !
Update
: 2025-02-19
Size
: 4kb
Publisher
:
li
[
matlab
]
bifurcation_of_duffing_systme
DL : 0
duffing系统的matlab分岔程序,对于初学者有一定的帮助。-The bifurcation matlab procedure of Duffing system, which would be helpful for beginners.
Update
: 2025-02-19
Size
: 1kb
Publisher
:
张博文
[
Mathimatics-Numerical algorithms
]
chaohundunfenchak
DL : 1
超混沌系统的分岔图求解,内容详细易懂,可读性好-Hyperchaotic system to solve the bifurcation diagram, detailed easy to understand and readable
Update
: 2025-02-19
Size
: 1kb
Publisher
:
wei
[
matlab
]
DDEBIFTOOL_203
DL : 0
动力学分析软件,可以对系统稳定性、分岔等现象进行模拟-Dynamics analysis packages, providing solution to differential delay equations, modeling the stability, bifurcation
Update
: 2025-02-19
Size
: 1.84mb
Publisher
:
谈利亚
[
matlab
]
Chaos-Lorenz
DL : 2
利用数学软件MATLAB对Lorenz系统等六个重要的混沌模型进行数值计算,同时模拟出各类混沌系统的独特性质,如混沌吸引子,倍周期,初值敏感性,相图,分岔图等。通过观察和分析上述特性,加深了我们对混沌现象的理解。-matlab Chaos Lorenz
Update
: 2025-02-19
Size
: 639kb
Publisher
:
陈亮
[
Other
]
分岔图matlab
DL : 0
已知y=f(x)上一点(x1,y1),则在y=x直线上的点就为(y1,y1)。对应f(x)上点坐标即为(y1,f(y1)……依次类推,可以迭代出蛛网图形用来判断不动点是否稳定。模型为:x(t+1)=c*x(t)^2*(2-x(t)),其中c=25/16。(A point (x1, Y1) on the y=f (x) is known, and the point on the y=x line is (Y1, Y1). The point coordinates corresponding to f (x) are (Y1, f (Y1))...... By analogy, the cobweb graph can be iterated to judge whether the fixed point is stable or not. The model is: X (t+1) =c*x (T) ^2* (2-x (T)), where c=25/16.)
Update
: 2025-02-19
Size
: 1kb
Publisher
:
forevermorning
[
Other
]
bifurcation-master
DL : 0
由matlab编程的分岔图,附有正确代码(The bifurcation diagram programmed by MATLAB, translated by Wang Ziyu, with correct code)
Update
: 2025-02-19
Size
: 2kb
Publisher
:
蚊子五
«
1
2
3
»
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.