Welcome![Sign In][Sign Up]
Location:
Search - 列和非零元素个数

Search list

[Other用三元组表实现稀疏矩阵的转置运算

Description: 用三元组表实现稀疏矩阵的转置运算 一个阶数较大的矩阵中的非零元素个数S相对于矩阵元素的总个数t很小时,即非 零元素个数s占矩阵元素的总个数t的25%~30%时,称该矩阵为稀疏矩阵称. 由于稀疏矩阵中非零元素的分布没有任何规律,在存储非零元素时,必须保存该非 零元素所对应的行下标和列下标.这样,存储的每个稀疏矩阵中的非零元素都需要(行 下标,列下标,元素值)三个参量来唯一确定,将这种存储结构称为稀疏矩阵的三元组 表示法. 稀疏矩阵中的所有非零元素构成三元组线性表.若把稀疏矩阵的三元组线性表按顺 序存储结构存储,则称为稀疏矩阵的三元组顺序表. -group table with three yuan achieve sparse matrix transpose operation of a larger order of the matrix number of non-zero elements relative S matrix elements in the total number t very hour, that is the number of non-zero elements s matrix elements for the total number of t 25% ~ 30%, matrix said the sparse matrix said. because of sparse matrix distribution of non-zero elements of no laws, storage nonzero elements, we must preserve the non-zero elements corresponding to the line indexed and listed indices. so, each storage sparse matrix of non-zero elements are required (under the demarcation line are indexed, elements of value) three parameters to determine only, This storage structure will be known as the sparse matrix method ternary group said. Sparse Matrix of all non-zero elements cons
Platform: | Size: 2790 | Author: snow | Hits:

[Other resourcematrixcompess

Description: 稀疏矩阵(SparseMatrix):是矩阵中的一种特殊情况,其非零元素的个数远小于零元素的个数。 设m行n列的矩阵含t个非零元素.以二维数组表示高阶的稀疏矩阵时,会产生零值元素占的空间很大且进行了很多和零值的运算的问题。 -sparse matrix (SparseMatrix) : Matrix is a special situation. its non-zero elements of the number far less than the number of zero elements. Let m n trip out of the matrix containing t nonzero elements. A two-dimensional array of high-ranking sparse matrix, have zero value for elements of the space and a great many and zero computational problems.
Platform: | Size: 23223 | Author: Eurik | Hits:

[Program doc 输入要求:稀疏矩阵的行、列和非零元素个数

Description: 输入要求:稀疏矩阵的行、列和非零元素个数 输出要求:稀疏矩阵的转置、加法、减法、乘法
Platform: | Size: 301751 | Author: yunjisuan | Hits:

[Other用三元组表实现稀疏矩阵的转置运算

Description: 用三元组表实现稀疏矩阵的转置运算 一个阶数较大的矩阵中的非零元素个数S相对于矩阵元素的总个数t很小时,即非 零元素个数s占矩阵元素的总个数t的25%~30%时,称该矩阵为稀疏矩阵称. 由于稀疏矩阵中非零元素的分布没有任何规律,在存储非零元素时,必须保存该非 零元素所对应的行下标和列下标.这样,存储的每个稀疏矩阵中的非零元素都需要(行 下标,列下标,元素值)三个参量来唯一确定,将这种存储结构称为稀疏矩阵的三元组 表示法. 稀疏矩阵中的所有非零元素构成三元组线性表.若把稀疏矩阵的三元组线性表按顺 序存储结构存储,则称为稀疏矩阵的三元组顺序表. -group table with three yuan achieve sparse matrix transpose operation of a larger order of the matrix number of non-zero elements relative S matrix elements in the total number t very hour, that is the number of non-zero elements s matrix elements for the total number of t 25% ~ 30%, matrix said the sparse matrix said. because of sparse matrix distribution of non-zero elements of no laws, storage nonzero elements, we must preserve the non-zero elements corresponding to the line indexed and listed indices. so, each storage sparse matrix of non-zero elements are required (under the demarcation line are indexed, elements of value) three parameters to determine only, This storage structure will be known as the sparse matrix method ternary group said. Sparse Matrix of all non-zero elements cons
Platform: | Size: 2048 | Author: snow | Hits:

[Data structsmatrixcompess

Description: 稀疏矩阵(SparseMatrix):是矩阵中的一种特殊情况,其非零元素的个数远小于零元素的个数。 设m行n列的矩阵含t个非零元素.以二维数组表示高阶的稀疏矩阵时,会产生零值元素占的空间很大且进行了很多和零值的运算的问题。 -sparse matrix (SparseMatrix) : Matrix is a special situation. its non-zero elements of the number far less than the number of zero elements. Let m n trip out of the matrix containing t nonzero elements. A two-dimensional array of high-ranking sparse matrix, have zero value for elements of the space and a great many and zero computational problems.
Platform: | Size: 22528 | Author: Eurik | Hits:

[AlgorithmSparse-matrix-transpose

Description: 绍了对稀疏矩阵进行压缩存储的几种存储方式,重点分析了稀疏矩阵的三元组压缩存储的不同存储结构,提出利 用数组首下标元素存储稀疏矩阵总行数、总列数和非零元素总个数三个信息的改进的三元组顺序表存储定义方式。同时给出 了用c语言编写的基于该定义上设计矩阵转置的几种算法。通过对各算法进行时间复杂度分析,总结出了几种算法的优 缺点。-Introduce a compressed sparse matrix storage of several storage
Platform: | Size: 272384 | Author: 陈晓娟 | Hits:

[AlgorithmMatrix

Description: 稀疏矩阵的行数、列数和非零元素的个数 将稀疏矩阵 a转置,结果在稀疏矩阵 b中-The number of rows of sparse matrix, the number of columns and the number of nonzero elements of sparse matrix a transposition, results in the sparse matrix b
Platform: | Size: 1024 | Author: 党心蕊 | Hits:

[Sniffer Package captureMatrix-addition

Description: 矩阵相加(三元组): 先建立稀疏矩阵的三元组存储结构。输入第一个矩阵的行数和列数和非零元素个数,并输入非零元所在位置和大小。输入第二个矩阵的非零元素个数并输入非零元所在位置和大小。然后处理这两个矩阵:若矩阵1中非零元素的行列值等于矩阵2中非零元素的行列值,只需将两非零元素相加;若矩阵1中非零元素的行列值不等于矩阵2中非零元素的行列值,分别记录其所在位置和大小。-Matrix addition (triples): First create a sparse matrix storage structure triples. Enter the first matrix of rows and columns and the number of non-zero elements, and enter the location and size of the nonzero elements. Enter the second matrix and enter the number of non-zero elements of the location and size of the nonzero elements. Then deal with these two matrices: If non-zero elements of the matrix a value equal to the matrix 2 ranks in the ranks of the value of non-zero elements, simply add two nonzero elements if non-zero elements of the matrix a is not equal to the ranks matrix 2 ranks of non-zero elements values ​ ​ were recorded in their location and size.
Platform: | Size: 1024 | Author: ck | Hits:

[Data structsd

Description: 稀疏矩阵的压缩存储: 实现稀疏矩阵压缩存储,并实现矩阵转置和求和。 输入矩阵时,首先需要输入非零元素的个数,然后分别输入矩阵的 行号,列号和值。 输完2个矩阵后,自动进行计算第一个矩阵的转置以及两个矩阵的和。 例如:输入如下: 100 90 5 //矩阵的行数为100,列数为90,共5个非零元素。 1 10 100 //a(1,10)=100 50 60 200//a(50,60)=200 50 80 100//a(50,80)=100 60 60 200//a(60,60)=200 99 89 10//a(99,89)=10 100 90 4 //矩阵b的行数为100,列数为90,共4个非零元素。 1 1 10 //b(1,1)=10 50 60 -200//b(50,60)=-200 50 80 100 //b(50,80)=100 70 70 10 //b(70,70)=10-Compressed storage sparse matrix: Implementing sparse matrix compression storage and realization matrix transpose and summation. When you enter the matrix, you first need to enter the number of non-zero elements of the matrix are input and line number, column number and value. Losers 2 matrix, the automatic calculation of a matrix transpose and matrix and the two. Example: Enter the following: Number of lines 100 905 // matrix is ​ ​ 100, the number of columns is 90, a total of five non-zero elements. 1 10 100 // a (1,10) = 100 50 60 200 // a (50,60) = 200 50 80 100 // a (50,80) = 100 60 60 200 // a (60,60) = 200 99 89 10 // a (99,89) = 10 100 90 4 // matrix b is the number of lines is 100, the number of columns is 90, a total of four non-zero elements. 1 1 10 // b (1,1) = 10 50 60-200 // b (50,60) =- 200 50 80 100 // b (50,80) = 100 70 70 10 // b (70, 70) = 10
Platform: | Size: 688128 | Author: 刘忠威 | Hits:

CodeBus www.codebus.net