Welcome![Sign In][Sign Up]
Location:
Search - 2 level image decomposition

Search list

[Compress-Decompress algrithmsSPIHT(Matlab).zip

Description:

% Matlab implementation of SPIHT (without Arithmatic coding stage)
%
% By Jing Tian, scuteejtian@hotmail.com

fprintf('-----------   Welcome to SPIHT Matlab Demo!   ----------------\n');

fprintf('-----------   Load Image   ----------------\n');
infilename = 'lena512.bmp';
outfilename = 'lena512_reconstruct.bmp';

Orig_I = double(imread(infilename));

rate = 1;

OrigSize = size(Orig_I, 1);
max_bits = floor(rate * OrigSize^2);
OutSize = OrigSize;
image_spiht = zeros(size(Orig_I));
[nRow, nColumn] = size(Orig_I);

fprintf('done!\n');
fprintf('-----------   Wavelet Decomposition   ----------------\n');
n = size(Orig_I,1);
n_log = log2(n);
level = n_log;
% wavelet decomposition level can be defined by users manually.
type = 'bior4.4';
[Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(type);

[I_W, S] = func_DWT(Orig_I, level, Lo_D, Hi_D);

fprintf('done!\n');

fprintf('-----------   Encoding   ----------------\n');
img_enc = func_SPIHT_Enc(I_W, max_bits, nRow*nColumn, level);  

fprintf('done!\n');
fprintf('-----------   Decoding   ----------------\n');
img_dec = func_SPIHT_Dec(img_enc);

fprintf('done!\n');
fprintf('-----------   Wavelet Reconstruction   ----------------\n');
img_spiht = func_InvDWT(img_dec, S, Lo_R, Hi_R, level);

fprintf('done!\n');
fprintf('-----------   PSNR analysis   ----------------\n');

imwrite(img_spiht, gray(256), outfilename, 'bmp');

Q = 255;
MSE = sum(sum((img_spiht-Orig_I).^2))/nRow / nColumn;
fprintf('The psnr performance is %.2f dB\n', 10*log10(Q*Q/MSE));


Platform: | Size: 232873 | Author: jasonchang | Hits:

[Graph programB2193AED

Description: 一种新的图像脆弱水印算法李亚琴 ,孙星明 ,杨恒伏(1.苏州市职业大学,江苏苏州215104;2.湖南大学计算机与通信学院,湖南长沙410082)摘要:提出一种基于小波变换和QR分解的图像脆弱水即方法。嵌入水印时,首先对原始图像进行三级小波分解,然后提取第三级低频子带的边缘特征,同时对此边缘特征和第三级垂直高频子带进行QR分解,用边缘特征的一部分分解结果替换垂直高频子带分解结果的相应部位来嵌入水即,最后进行小波逆变换得到嵌入水印的图像。图像认证时,首先对观测图像进行三级小波分解,第三级垂直高频子带与低频子带边缘特征的QR分解结果进行比较,就可以准确认证图像是否经过攻击,并可以精确定位受攻击的部位。实验结果表明此方法的有效性和可行性。-a new image fragile watermarking algorithm Ya-Qin Li, Sun Xingming, Heng Yang Fu (1. Suzhou City Vocational University, Suzhou City in Jiangsu 215104; 2. Hunan University College of Computer and Communication, Changsha, Hunan 410082) Abstract : A wavelet transform based on QR decomposition and the image that the fragile water ways. Embedded watermark, the first of three original image wavelet decomposition, and then extract the third level sub-band edge features, Meanwhile this edge features and third-vertical high-frequency band for QR decomposition, Edge feature with the results of the replacement part of decomposition vertical high-frequency subband results to the corresponding parts of the water that is embedded. Finally inverse wavelet transform embedded watermark images. Image Authen
Platform: | Size: 231599 | Author: ghostsx | Hits:

[Graph programB2193AED

Description: 一种新的图像脆弱水印算法李亚琴 ,孙星明 ,杨恒伏(1.苏州市职业大学,江苏苏州215104;2.湖南大学计算机与通信学院,湖南长沙410082)摘要:提出一种基于小波变换和QR分解的图像脆弱水即方法。嵌入水印时,首先对原始图像进行三级小波分解,然后提取第三级低频子带的边缘特征,同时对此边缘特征和第三级垂直高频子带进行QR分解,用边缘特征的一部分分解结果替换垂直高频子带分解结果的相应部位来嵌入水即,最后进行小波逆变换得到嵌入水印的图像。图像认证时,首先对观测图像进行三级小波分解,第三级垂直高频子带与低频子带边缘特征的QR分解结果进行比较,就可以准确认证图像是否经过攻击,并可以精确定位受攻击的部位。实验结果表明此方法的有效性和可行性。-a new image fragile watermarking algorithm Ya-Qin Li, Sun Xingming, Heng Yang Fu (1. Suzhou City Vocational University, Suzhou City in Jiangsu 215104; 2. Hunan University College of Computer and Communication, Changsha, Hunan 410082) Abstract : A wavelet transform based on QR decomposition and the image that the fragile water ways. Embedded watermark, the first of three original image wavelet decomposition, and then extract the third level sub-band edge features, Meanwhile this edge features and third-vertical high-frequency band for QR decomposition, Edge feature with the results of the replacement part of decomposition vertical high-frequency subband results to the corresponding parts of the water that is embedded. Finally inverse wavelet transform embedded watermark images. Image Authen
Platform: | Size: 231424 | Author: ghostsx | Hits:

[Special Effectsmywavet

Description: 小波分解重构,降噪,压缩编码,压缩性能分析 xijie.m 将图片1级小波分解为近似,水平细节,垂直细节,对角细节 xijie2.m 将图片1和2级分解并重构,近似,水平细节,垂直细节,对角细节 noisereduce.m 图像1/2降噪. noisereduce2.m全值阀值消噪图像 mycompress.m小波BIOR3.7一次和二次压缩,与一次与二次解压缩 mycompress2.m分析小波分解系数中置0的系数个数百分比和压缩后图像剩余能量百分比-Reconstruction of wavelet decomposition, noise reduction, compression coding, compression performance analysis xijie.m pictures a wavelet decomposition for the approximation, horizontal details, vertical details, diagonal details xijie2.m pictures 1 and 2 decomposition and reconstruction, approximation, the level of details, vertical details, diagonal details noisereduce.m Image 1/2 noise reduction. noisereduce2.m full value mycompress.m threshold wavelet de-noising images BIOR3.7 the first and the second compression, with the first and the second extract mycompress2 . m analysis of wavelet decomposition coefficients to 0 and the coefficient of the percentage of the number of compressed images the percentage of residual energy
Platform: | Size: 222208 | Author: 李红 | Hits:

[2D Graphicwavecompression

Description: The following implementation steps have been made for the devised algorithm, which is based on 2D-wavelet. 1. Reading an image of either gray scale or RGB image. 2. Converting the image into grayscale if the image is RGB. 3. Decomposition of images using wavelets for the level N. 4. Selecting and assigning a wavelet for compression. 5. Generating threshold coefficients using Birge-Massart strategy. 6. Performing the image compression using wavelets. 7. Computing and displaying the results such as compressed image, retained energy and Zero coefficients. 8. Decompression the image based on the wavelet decomposition structure. 9. Plotting the reconstructed image. 10. Computing and displaying the size of original image, compressed image and decompressed image.
Platform: | Size: 1024 | Author: fer | Hits:

[Special Effectshw2

Description: 1.对一个256*256的图像进行DCT变换得到图像D,将D得斜下角数值置为零,然后进行DCT反变换. 2.对源图像进行K-L转换 1和2比较-1.Get a grey level image which size is N*N. (For example, 256*256, however, N = ), and partition to 8*8 sub images. 2.. Apply DCT to these sub images, and get the transformed image D with DCT coefficients for elements. 3. From D, keep the coefficient values for only upper left triangular region and set zeros for lower right region to approximate the image. (That is, only half of data is used.) 4.Take Inverse DCT to get the approximated image. 2 . Get the covariance matrix of image. 3 . Calculate the corresponding eigenvectors and eigenvalues. 4 . Represent the original image with Singular Value Decomposition. 5 . Approximate the image by taking off the 4 smallest eigenvalues. (That is, only half of information is used.)
Platform: | Size: 1024 | Author: zhengyan | Hits:

[Special Effectswavelet-image

Description: 二维图像信号的去噪步骤: (1)二维图像信号的小波分解。选择合适的小波与恰当的分解层次N,并对待压缩的二维图像信号进行N层分解计算。 (2)对分解后的每一层高频系数,选择一个恰当的阈值,并对该层高频系数进行软阈值量化处理。 (3)二维图像信号的小波重构。用小波分解后的第N层近似(低频系数)和经过阈值量化处理后的各层细节(高频系数),对二维信号进行小波重构。-Two-dimensional image signal denoising steps: (1) two-dimensional image signal wavelet decomposition. Select the appropriate wavelet decomposition level and the appropriate N, and treatment of compressed N-layer two-dimensional image signal decomposition calculations. (2) of the decomposition of high-frequency coefficients of each layer, select an appropriate threshold, and high-frequency coefficients of the layer of soft threshold quantification. (3) Wavelet two-dimensional image reconstruction. Wavelet decomposition of the first N-layer approximation (low frequency factor) and through the quantification of threshold levels after the details (high frequency coefficients), two-dimensional wavelet reconstruction signal.
Platform: | Size: 4096 | Author: lujun | Hits:

[Compress-Decompress algrithms61IC_H4231

Description: PAV (H265) 是 音视频 压缩解压 协议,非常不同于H264/MPEG4,ZPAV (H265) 的基本算法 是 小波,多级树集合群,广义小波,数学形态小波,...... ZPAV (H265) 基本算法 : 1,图象与声音分解与合成 :小波 ; 2,图象与声音前处理 :小波子带零交叉降噪,目标纹理处理,语音处理 ; 3,速率控制 :小波子带熵速率控制 ; 4,量化与反量化 :小波子带熵量化与反量化 ; 5,低频分量和高频分量的降维 :小波子带邻域交叉降维 ; 6,运动矢量和量化表的分解与合成 :广义小波 ; 7,位面编码 :数学形态小波,多级树集合群,嵌入零树,位面降维 ; 8,位流编码 :算术编码,熵编码 ; 9,运动估计 :宏块最优决策,运动矢量预测 ; A,运动搜索 :钻石,大钻石,小钻石,方形 ; B,图象与声音后处理 :低通滤波,断点重构,宏块平滑 ; C,误码纠错 :矢量仿真,帧间仿真 。 -The PAV (H265) is the audio and video compression and decompression protocol, is very different from H264/MPEG4 ZPAV (H265) algorithm is a wavelet, multi-level tree collection group, and generalized wavelets, mathematical morphology, wavelet, ... ZPAV (H265) algorithm: 1, image and sound decomposition and synthesis: wavelet 2, image and sound processing: wavelet sub-band zero-crossing noise, target texture processing, speech processing 3, the rate control: wavelet subband entropy rate control 4, quantization and inverse quantization: Wavelet subband entropy quantization and inverse quantization 5, the dimensionality reduction of the low frequency component and high frequency components: the wavelet subbands neighborhood cross-dimensionality reduction 6, the decomposition and synthesis of the motion vector and quantization tables: generalized wavelet 7, bit-plane coding: the mathematical form of wavelet multi-level tree collection group, embedded zerotree, bit plane
Platform: | Size: 4826112 | Author: 李阳 | Hits:

[Crack HackFusion_old

Description: A novel higher order singular value decomposition (HOSVD)- based image fusion algorithm is proposed. The key points are given as follows: 1) Since image fusion depends on local information of source images, the proposed algorithm picks out informative image patches of source images to constitute the fused image by processing the divided subtensors rather than the whole tensor 2) the sum of absolute values of the coefficients (SAVC) from HOSVD of subtensors is employed for activity-level measurement to evaluate the quality of the related image patch and 3) a novel sigmoid-function-like coefficient-combining scheme is applied to construct the fused result. Experimental results show that the proposed algorithm is an alternative image fusion approach.-A novel higher order singular value decomposition (HOSVD)- based image fusion algorithm is proposed. The key points are given as follows: 1) Since image fusion depends on local information of source images, the proposed algorithm picks out informative image patches of source images to constitute the fused image by processing the divided subtensors rather than the whole tensor 2) the sum of absolute values of the coefficients (SAVC) from HOSVD of subtensors is employed for activity-level measurement to evaluate the quality of the related image patch and 3) a novel sigmoid-function-like coefficient-combining scheme is applied to construct the fused result. Experimental results show that the proposed algorithm is an alternative image fusion approach.
Platform: | Size: 80896 | Author: paul | Hits:

[Multimedia Developcode

Description: The simulation model contains the wavelet based compression method using the dubechies wavelet for the purpose of 2-D image compression. The model describes the one-level decomposition using the decomposition components and selection of the superior component is represented as the compressed data. The decompression is also shown using the superior component only.
Platform: | Size: 251904 | Author: Ajitpal Brar | Hits:

[matlabwavelet

Description: 2 level DECOMPOSITION wavelet on image-2 level DECOMPOSITION wavelet on image
Platform: | Size: 16384 | Author: sinku | Hits:

[matlab02. Matlab

Description: WAVEFAST Perform multi-level 2-dimensional fast wavelet transform. [C, L] = WAVE FAST (X , N, LP, HP) performs a 20 N-level FWT of image (or matrix) X with respect to decomposition filters LP and HP. [C, L] = WAVEFAST(X, N, WNAME) performs the same operation but fetches filters LP and HP for wavelet WNAME using WAVEFILTER. Scale parameter N must be less than or equal to 10g2 of the maximum image dimension. Filters LP and HP must be even. To reduce border distortion, X is symmetrically extended. That is, if X = [c1 c2 c3 ... cn] (in 1D), then its symmetric extension would be [ ... c3 c2 c1 c1 c2 c3 .. , cn cn cn-1 cn-2 ... ].
Platform: | Size: 3072 | Author: Hoang Cuong | Hits:

CodeBus www.codebus.net