Location:
Search - 2n
Search list
Description: 在 n 行 n 列的国际象棋棋盘上,最多可布n个皇后。
若两个皇后位于同一行、同一列、同一对角线上,则称为它们为互相攻击。
n皇后问题是指找到这 n 个皇后的互不攻击的布局。
n 行 n 列的棋盘上,主次对角线各有2n-1条。-n n trip out of the international chess board, the maximum n Queen's cloth. If two at the same Queen's visit, the same series on the same diagonal, as they attack each other. N Queen's problem is found n the Queen not to attack each other's layout. N n trip out on the chessboard, and secondary diagonal each 2n-1.
Platform: |
Size: 1384 |
Author: 刘二 |
Hits:
Description: DSP编程代码,FFT算法,经典!!
FFT实验
一、 理论:
公式(1)FFT运算公式
FFT并不是一种新的变换,它是离散傅立叶变换(DFT)的一种快速算法。由于我们在计算DFT时一次复数乘法需用四次实数乘法和二次实数加法;一次复数加法则需二次实数加法。每运算一个X(k)需要4N次复数乘法及2N+2(N-1)=2(2N-1)次实数加法。所以整个DFT运算总共需要4N^2次实数乘法和N*2(2N-1)=2N(2N-1)次实数加法。如此一来,计算时乘法次数和加法次数都是和N^2成正比的,当N很大时,运算量是可观的,因而需要改进对DFT的算法减少运算速度。
根据傅立叶变换的对称性和周期性,我们可以将DFT运算中有些项合并。
我们先设序列长度为N=2^L,L为整数。将N=2^L的序列x(n)(n=0,1,……,N-1),按N的奇偶分成两组,也就是说我们将一个N点的DFT分解成两个N/2点的DFT,他们又从新组合成一个如下式所表达的N点DFT:
一般来说,输入被假定为连续、合成的。当输入为纯粹的实数的时候,我们就可以利用左右对称的特性更好的计算DFT。
我们称这样的RFFT优化算法是包装算法:首先2N点实数的连续输入称为“进包”。其次N点的FFT被连续被运行。最后作为结果产生的N点的合成输出是
Platform: |
Size: 439370 |
Author: 徐克 |
Hits:
Description: 算法5.1
1. 输入a,b,ε。
2. 置n=1,h=(b-a)/2,T0=h(f(a)+f(b)).
3. 置F=0,对i=1,2,....n,求
F=F+f(a+(2i-1)h)
4. T=T0+hF.
5.若|T-T0|<3ε,输出I≈T停机 否则置2n=>n,h/2=>h,T=>T0,转步骤3。
程序说明:
本程序暂时支持正弦函数的计算
Platform: |
Size: 901 |
Author: 高峰 |
Hits:
Description: 算法5.1
1. 输入a,b,ε。
2. 置n=1,h=(b-a)/2,T0=h(f(a)+f(b)).
3. 置F=0,对i=1,2,....n,求
F=F+f(a+(2i-1)h)
4. T=T0+hF.
5.若|T-T0|<3ε,输出I≈T停机 否则置2n=>n,h/2=>h,T=>T0,转步骤3。
程序说明:
本程序暂时支持正弦函数的计算
Platform: |
Size: 786 |
Author: 高峰 |
Hits:
Description: JAVA数据库编程-Java Database Programming
Platform: |
Size: 1444414 |
Author: 王朝晖 |
Hits:
Description: 利用VHDL语言编写的一个16分频器,另外可以在程序中修改为任意2N的分频器-use VHDL prepared a 16 dividers, Also in the revision process to be arbitrary 2 N Divider
Platform: |
Size: 25501 |
Author: 黎飞飞 |
Hits:
Description: 这是用VHDL 语言编写的参数可以直接设置的2n倍时钟分频器,在运用时,不需要阅读VHDL源代码,只需要把clk_div2n.vhd加入当前工程便可以直接调用clk_div2n.bsf。-This is the VHDL language parameters can be directly installed 2n times the clock dividers, when exercising not reading VHDL source code, clk_div2n.vhd simply need to present the project can directly call clk_div2n. bsf.
Platform: |
Size: 1588 |
Author: 谢光华 |
Hits:
Description: 矩阵中的每一个元素称为像元、像素或图像元素。而g(i, j)代表(i, j)点的灰度值,即亮度值。
由于g (i, j)代表该点图像的光强度(亮度),而光是能量的一种形式,故g (i, j)必须大于零,且为有限值,即: 0<=g (i, j)<2n。
用g (i, j)的数值来表示(i, j)位置点上灰度级值的大小,即只反映了黑白灰度的关系。
数字化采样一般是按正方形点阵取样的, -each of the matrix elements known as a pixel, pixels or image elements. And g (i, j), speaking on behalf of (i, j) of the gray values, brightness value. As g (i, j) on behalf of the image point of light intensity (brightness), but just a form of energy, the g (i, j) must be greater than zero, and has limited value, namely : 0 "= g (i, j)" 2n. By g (i, j) to indicate the numerical (i, j) position on the point value of the gray-class size, that is, only reflects the intensity of black and white relations. Digital sampling is usually square lattice sampling,
Platform: |
Size: 731117 |
Author: 刘德华 |
Hits:
Description: 矩阵中的每一个元素称为像元、像素或图像元素。而g(i, j)代表(i, j)点的灰度值,即亮度值。
由于g (i, j)代表该点图像的光强度(亮度),而光是能量的一种形式,故g (i, j)必须大于零,且为有限值,即: 0<=g (i, j)<2n。
用g (i, j)的数值来表示(i, j)位置点上灰度级值的大小,即只反映了黑白灰度的关系。
数字化采样一般是按正方形点阵取样的, -each of the matrix elements known as a pixel, pixels or image elements. And g (i, j), speaking on behalf of (i, j) of the gray values, brightness value. As g (i, j) on behalf of the image point of light intensity (brightness), but just a form of energy, the g (i, j) must be greater than zero, and has limited value, namely : 0 "= g (i, j)" 2n. By g (i, j) to indicate the numerical (i, j) position on the point value of the gray-class size, that is, only reflects the intensity of black and white relations. Digital sampling is usually square lattice sampling,
Platform: |
Size: 1138748 |
Author: 刘德华 |
Hits:
Description: 矩阵中的每一个元素称为像元、像素或图像元素。而g(i, j)代表(i, j)点的灰度值,即亮度值。
由于g (i, j)代表该点图像的光强度(亮度),而光是能量的一种形式,故g (i, j)必须大于零,且为有限值,即: 0<=g (i, j)<2n。
用g (i, j)的数值来表示(i, j)位置点上灰度级值的大小,即只反映了黑白灰度的关系。
数字化采样一般是按正方形点阵取样的, -each of the matrix elements known as a pixel, pixels or image elements. And g (i, j), speaking on behalf of (i, j) of the gray values, brightness value. As g (i, j) on behalf of the image point of light intensity (brightness), but just a form of energy, the g (i, j) must be greater than zero, and has limited value, namely : 0 "= g (i, j)" 2n. By g (i, j) to indicate the numerical (i, j) position on the point value of the gray-class size, that is, only reflects the intensity of black and white relations. Digital sampling is usually square lattice sampling,
Platform: |
Size: 149209 |
Author: 刘德华 |
Hits:
Description: 矩阵中的每一个元素称为像元、像素或图像元素。而g(i, j)代表(i, j)点的灰度值,即亮度值。
由于g (i, j)代表该点图像的光强度(亮度),而光是能量的一种形式,故g (i, j)必须大于零,且为有限值,即: 0<=g (i, j)<2n。
用g (i, j)的数值来表示(i, j)位置点上灰度级值的大小,即只反映了黑白灰度的关系。
数字化采样一般是按正方形点阵取样的, -each of the matrix elements known as a pixel, pixels or image elements. And g (i, j), speaking on behalf of (i, j) of the gray values, brightness value. As g (i, j) on behalf of the image point of light intensity (brightness), but just a form of energy, the g (i, j) must be greater than zero, and has limited value, namely : 0 "= g (i, j)" 2n. By g (i, j) to indicate the numerical (i, j) position on the point value of the gray-class size, that is, only reflects the intensity of black and white relations. Digital sampling is usually square lattice sampling,
Platform: |
Size: 918094 |
Author: 刘德华 |
Hits:
Description: 回溯(b a c k t r a c k i n g)是一种系统地搜索问题解答的方法。为了实现回溯,首先需要为问题定义一个解空间( solution space),这个空间必须至少包含问题的一个解(可能是最优的)。在迷宫老鼠问题中,我们可以定义一个包含从入口到出口的所有路径的解空间;在具有n 个对象的0 / 1背包问题中(见1 . 4节和2 . 2节),解空间的一个合理选择是2n 个长度为n 的0 / 1向量的集合,这个集合表示了将0或1分配给x的所有可能方法。当n= 3时,解空间为{ ( 0 , 0 , 0 ),( 0 , 1 , 0 ),( 0 , 0 , 1 ),( 1 , 0 , 0 ),( 0 , 1 , 1 ),( 1 , 0 , 1 ),( 1 , 1 , 0 ),( 1 , 1 , 1 ) }。-retrospective (b a c k t r a c k i n g) is a systematic search to answer the question. To achieve retrospective, the first issue of the need for a definition of the solution space (solution space), The space must contain at least one solution to the problem (which may be optimal). Rats in a maze problem, we can contain a definition from the entrance to the export of the solution space trails; n is the object of the 0 / 1 knapsack problem (see 1. 4 and 2. 2) The solution space is a reasonable choice of two n length of the 0 n / a vector set, this assembly that it will 0 or 1 x allocated to all possible ways. When n = 3, the solution space for the ((0, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)).
Platform: |
Size: 29600 |
Author: john |
Hits:
Description: Von Neuman在1940年提出了平方取中法,其原理是将一个给定的2n比特的数平方,然后高位补0得到4n比特的数,再截取中间的2n位进行下次迭代,并得到一个随机数序列。这种方法无论是在硬件实现上,还是在仿真测试上都比较容易实现,但是它的周期受初始值的影响很大,如果初始值选得不好,会严重影响随机数序列的质量和周期,而且其最大周期不会超过22n
随机数生成-Von Neuman in the 1940 square from France, Its principle is to be a set of two n-bit a few square, and then high-0 4 n is the number of bits. Interception again among the two n-for the next iteration, and with a random number sequence. This method both in hardware, or on the simulation test will be relatively easy to achieve. However, its initial value by the cycle of a great value if the initial election properly, will seriously affect random number sequences of the quality and cycle, but its biggest cycle will not exceed 22 n Random Number Generation
Platform: |
Size: 6355 |
Author: 韩彩亮 |
Hits:
Description: 给定整数n,产生所有[2n]上的匹配(matching)
//将其视为一个所有块大小均为2的集合分拆
//输出格式为 a1 a2 - b1 b2 - c1 c2 - ...
//满足a1<a2, b1<b2, ...
//且 a1 < b1 < c1 <-given integer n, have all [2n] on the matching (matching) / / will be considered as an all pieces are two sets of a split / / output format for a1 a2-b2 b1 - c1 c2-... / / meet a1
Platform: |
Size: 1398 |
Author: 侯庆虎 |
Hits:
Description: //给定整数n,产生所有[2n]上的匹配(matching)
//将其视为一个所有块大小均为2的集合分拆
//以a_i表示其第i个元素所在的集合号
//输出格式为 a1 a2 a3 ...
//满足
//a_{i+1} <= max { a1,a2,...a_i } + 1
-/ / a given integer n, have all [2n] on the matching (matching) / / will be considered as an all pieces are two sets of a split / / a_i said in its i elements of a collection of lies / / output format for a1 a2 a3 ... / / meet / / a_ i (a)
Platform: |
Size: 1743 |
Author: 侯庆虎 |
Hits:
Description: 硬盘FAT文件系统原理的详细分析
硬盘由很多盘片(platter)组成,每个盘片的每个面都有一个读写磁头。如果有N个盘片。
就有2N个面,对应2N个磁头(Heads),从0、1、2开始编号。每个盘片被划分成若干个同心圆磁道(逻辑上的,是不可见的。)每个盘片的划分规则通常是一样的。这样每个盘片的半径均为固定值R的同心圆再逻辑上形成了一个以电机主轴为轴的柱面(Cylinders),从外至里编号为0、1、2⋯ ⋯ 每个盘片上的每个磁道又被划分为几十个扇区(Sector),通常的容量是512byte,并按照一定规则编号为1、2、3⋯ ⋯ 形成Cylinders×Heads×Sector个扇区。这三个参数即是硬盘的物理参数。我们下面的很多实践需要深刻理解这三个参数的意义。
Platform: |
Size: 587959 |
Author: 啊非 |
Hits:
Description: 讲述ATL最新8.0版本的功能,深入分析了ATL的工作流程,内部构造,是高级Windows开发者不可多得的材料。-ATL on the latest 8.0 version of the function, ATL-depth analysis of the workflow, internal structure, is a senior Windows developers rare material.
Platform: |
Size: 4262912 |
Author: rhf |
Hits:
Description: 最优化大全,百科全书
springer09年书籍-Optimization Daquan, encyclopedia books in springer09
Platform: |
Size: 51150848 |
Author: 黄大为 |
Hits:
Description: DVB-T 2K signal generation Eq. vs. 2N-IFFT
Platform: |
Size: 1024 |
Author: Maruthi |
Hits:
Description: openssl-1.0.2n source
Platform: |
Size: 5374976 |
Author: 1foooo
|
Hits: