Location:
Search - Brodatz
Search list
Description: 基于样本的纹理合成,采取点替换的方法,可以合成brodatz类的纹理。采取的方法是先对图像分析,然后合成。
Platform: |
Size: 2464 |
Author: 熊雄 |
Hits:
Description: 里面有大概800幅左右的brodatz图像,可以用于图像处理的边缘提取,图像检索等。
Platform: |
Size: 50366692 |
Author: lichunlin0921 |
Hits:
Description: 他是Brodatz图像纹理特征库,可用于图像的纹理特征的匹配试验的图片
Platform: |
Size: 36447218 |
Author: huangleichina |
Hits:
Description: 基于样本的纹理合成,采取点替换的方法,可以合成brodatz类的纹理。采取的方法是先对图像分析,然后合成。-Texture synthesis based on samples taken at the replacement of the method of texture synthesis brodatz category. Approach taken is to firstly image analysis, and then synthesis.
Platform: |
Size: 2048 |
Author: 熊雄 |
Hits:
Description: 图像的灰度共生矩阵(GLCM)已知被理论证明并且实验显示它在纹理分析中是一个很好的方法,广泛
用于将灰度值转化为纹理信息. 然而,由于GLCM是像素距离和角度的矩阵函数,因此完整的GLCM的计算,其参数的
选取范围很广,这样GLCM的计算量很大,通常是不能这样用的. 为了解决这个问题,本文应用马尔可夫链的性质,从
理论上证明了GLCM的计算结果,当像素距离足够大的时候趋于一致性. 这样只需较少的参数值就可以完整的描述图
像的纹理特征. 最后,通过对Brodatz纹理库中自然纹理图像和几幅SAR图像进行仿真,仿真结果验证了上述结论.-err
Platform: |
Size: 431104 |
Author: 陈平 |
Hits:
Description: 图像纹理特征提取matlab,计算图像的粗糙度、方向度等特征。-Image texture feature extraction matlab, calculated image roughness, and other characteristics of the direction of degrees.
Platform: |
Size: 6615040 |
Author: moon |
Hits:
Description: this is a source code for face recognition using gabor filter
Platform: |
Size: 374784 |
Author: masoom |
Hits:
Description: :为使灰度共生矩阵(GI CM)提取的特征值较好地表达纹理信息.对 Brodatz纹理库图片进行了大量 实验。
首先测试了各构造参数对关键特征统计量的影响,给出了特征值随参数变化的规律,确立了构造参数的合理取值;然
后测试了图像旋转和大小变化对所提取特征值的影响 实验结果对优化灰度共生矩阵的构造、实现基于纹理的图像
检索有参考意义。 -gray
Platform: |
Size: 352256 |
Author: aaaaaaaa |
Hits:
Description: Gabor小波变换代码用于局部特征提取使用,又相当好的效果-Gabor texture descriptor have gained much attention for
different aspects of computer vision and pattern recognition.
Recently, on the rayleigh nature of Gabor filter outputs
Rayleigh model Gabor texture descriptor is proposed.
In this paper, we investigate the performance of these two
Gabor texture descriptor in texture classification. We built
a texture classification system based on BPNN, and use the
corresponding feature vector from traditional Gabor texture
descriptor or Rayleigh model one as input of BPNN. We use
three datasets from the Brodatz album database. For all
the three datasets, the original texture images are subdivided
into non-overlapping samples of size 32 × 32. 50
of the total samples are used for training and the rest are
used for testing. We compare the system training time and
recognition accuracy between two Gabor texture descriptor.
The experimental results show that, it takes more time when
using Rayleigh model Gabor texture descriptor than tr
Platform: |
Size: 16384 |
Author: 力量 |
Hits:
Description: 为使灰度共生矩阵(GLCM)提取的特征值较好地表达纹理信息,对Brodatz纹理库图片进行了大量实验。
首先测试了各构造参数对关键特征统计量的影响,给出了特征值随参数变化的规律,确立了构造参数的合理取值 然
后测试了图像旋转和大小变化对所提取特征值的影响-In order to grayscale co-occurrence matrix (GLCM) features extracted texture to express the value of good information and pictures on the Brodatz texture library has a large number of experiments. First, test the key features of various structural parameters on the impact of statistics given parameters of the feature value with changes in the law establishing the reasonable value of structural parameters and then test the changes in image rotation and size of the extracted characteristic values of
Platform: |
Size: 533504 |
Author: 才鸟 |
Hits:
Description: Brodatz texture image database 纹理图像库
Platform: |
Size: 6369280 |
Author: tantan |
Hits:
Description: 支持向量机(svM)是一种新的机器学习技术。本文采用一对一方法构建多分类SVM
分类器。利用常用的灰度共生矩阵方法提取图像纹理特征,组成特征向量,输入构建好的SVM
多分类器中进行分类。对从Brodatz纹理库中选取的4张纹理图像进行了分类实验,取得较好的
分类结果-Support vector machine (svM) is a new machine learning techniques. In this paper, one way to build a multi-classification SVM classifier. GLCM using methods commonly used to extract image texture features, compositions of the vector input to build a good classifier in the SVM multi-classification. From the Brodatz texture library texture selected four images were classified experiments to obtain better classification results
Platform: |
Size: 375808 |
Author: 刘东 |
Hits:
Description: Image Texture Classification Using Combined Grey Level Co-Occurrence Probabilities and Support Vector Machines
Texture refers to properties that represent the surface or structure of an object and is defined as something consisting of mutually related elements. The main focus in this study is to do texture segmentation and classification for texture digital images. Grey level co-occurrence probabilities (GLCP) method is being used to extract features from texture image. Gaussian support vector machines (GSVM) have been proposed to do classification on the extracted features. A popular Brodatz texture album had been chosen to test out the result. In this study, a combined GLCP-GSVM shows an improvement over GLCP in terms of classification accuracy.
Platform: |
Size: 659456 |
Author: Chetna Kharkar |
Hits:
Description: Brodatz Album 库中任取10幅图像,每幅图分成四小块,得到40幅小图像,取其中一幅小图像,对大图中其余三幅小图进行检索-image retrieval
Platform: |
Size: 3072 |
Author: 顾小东 |
Hits:
Description: 在brodatz纹理图像库上提取48维gabor特征,初学者一看就会,大有帮助。-Extract on brodatz texture image library features 48 dimensional gabor, beginners will be a look, a great help.
Platform: |
Size: 2048 |
Author: 蔡利君 |
Hits:
Description: 基于小波变换的纹理图像检索程序,对Brodatz标准纹理库中分割后的图像进行检索实验-Wavelet-based texture image retri procedures, image segmentation Brodatz standard texture library after the search experiment
Platform: |
Size: 1024 |
Author: zhang |
Hits:
Description: a code for classification based adaptive filters for brodatz album in pattern recognition
Platform: |
Size: 1024 |
Author: vahid |
Hits:
Description: Brodatz图像处理中常用的数据集。尤其是影像匹配方面。-a of images ,usually is used in image processing。
Platform: |
Size: 25932800 |
Author: ccz |
Hits:
Description: 此程序为用gabor小波提取图像的纹理特征,
Brodatz专辑纹理(每班49得到128x128的图像)-This program is used to extract the texture features the 116
brodatz album texture (49 128x128 images are obtained per class)
Platform: |
Size: 4096 |
Author: kk |
Hits:
Description: 用于图像纹理提取,图像分类等方面的研究,是一个很全面的纹理图像库。(For image texture extraction, image classification and other aspects of the study)
Platform: |
Size: 36731904 |
Author: zxz
|
Hits: