CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - COS.r
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - COS.r - List
[
Technology Management
]
omniNames
DL : 0
The OMNI Naming Service (omniNames) is an omniORB implementation of the OMG’s COS Naming Service Specification. It offers a way for a client to turn a human-readable name into an object reference, on which the client can subsequently invoke operations in the normal way. See the OMG specification for full details of the functionality provided by the Naming Service.-The OMNI Naming Service (omniNames) is an o mniORB implementation of the OMG's COS Naming S ervice Specification. It offers a way for a clie nt to turn a human-readable name into an object r eference. on which the client can subsequently invoke ope rations in the normal way. See the OMG specifica tion for full details of the functionality 577 ided by the Naming Service.
Update
: 2008-10-13
Size
: 71.84kb
Publisher
:
周紫
[
Technology Management
]
omniNames
DL : 0
The OMNI Naming Service (omniNames) is an omniORB implementation of the OMG’s COS Naming Service Specification. It offers a way for a client to turn a human-readable name into an object reference, on which the client can subsequently invoke operations in the normal way. See the OMG specification for full details of the functionality provided by the Naming Service.-The OMNI Naming Service (omniNames) is an o mniORB implementation of the OMG's COS Naming S ervice Specification. It offers a way for a clie nt to turn a human-readable name into an object r eference. on which the client can subsequently invoke ope rations in the normal way. See the OMG specifica tion for full details of the functionality 577 ided by the Naming Service.
Update
: 2025-02-19
Size
: 72kb
Publisher
:
周紫
[
Linux-Unix
]
ofdm-tge
DL : 0
OFDM程序,这么安排矩阵的目的是为了构造共轭对称矩阵 共轭对称矩阵的特点是 在ifft/fft的矢量上 N点的矢量 在0,N/2点必须是实数 一般选为0 1至N/2点 与 (N/2)+1至N-1点关于N/2共轭对称- BPSK simulation using a carrier cosine wave with ISI clc close all clear all figure(1) n=160 for i=1:n data(i)= 2*round(rand)-1 end create modulated BPSK signal first expand the bit stream exdata=[] for i=1:length(data) for rep=1:5 exdata= [exdata data(i)] end end ts=.1 t=1:ts:80.9 carrier=cos(pi*t) multiply expanded bitstream by cosine wave with carrier frequency this is the BPSK that is to be transmitted over the channel bpsk=carrier.*exdata bpsk=[bpsk(length(bpsk)-1) bpsk(length(bpsk)) bpsk] plot(bpsk) generating the noise p=rand(1,800)*2*pi p=rand*2*pi snr=10 r=sqrt(-1*(1/snr*log(1- rand))) no = 5*(r.* exp(j*p)) no = (r.* exp(j*p)) value of alpha al=rand+j*rand al=1 Spreading channel with the alpha as the variable for k=5:5:795 for l = 1:5 al=round(rand)+j*round(rand) rec(k+l)=bpsk(k+l)+al*bpsk(k-5+l) end end rxdata=rec+ no begin demodulation first multiply recie
Update
: 2025-02-19
Size
: 5.86mb
Publisher
:
卞敏捷
[
matlab
]
cos
DL : 0
啁啾cos周期光纤光栅 Cos-period fiber grating chirp
Update
: 2025-02-19
Size
: 1kb
Publisher
:
wuminghua
[
TreeView
]
circle
DL : 0
function [] = circleagain(a,b,c,r) pixel = 0.1 theta1 = 0 theta2 = 360*pi/180 pix = pixel/r theta = theta1:pix:theta2 global x y z x = a + r*cos(theta) y = b + r*sin(theta) z = ones(1,length(x))*c x=round(x*10)/10 y=round(y*10)/10 z=round(z*10)/10 plot3(x,y,z, c )
Update
: 2025-02-19
Size
: 370kb
Publisher
:
boom
[
matlab
]
matlab
DL : 0
文件1:复数的表达与计算;文件2:用matlab计算∛ (-8),并用图形表示;文件3:用符号计算研究方程sin(3)uz^2+vz+3w-a5=0的解;文件4:求阿基米德螺线r=a*θ,(a>0)在θ=0到φ间的曲线长度函数,并求a=1,φ=2п间的曲线长度;文件五:著名的Givens旋转G=[■(cos t&-sin t@sin t&cos t)]对矩阵A=[■(√3/2&1/2@1/2&√3/2)]的旋转作用。-five programs about matlab
Update
: 2025-02-19
Size
: 2kb
Publisher
:
潘登
[
matlab
]
Fading-channel-simulation
DL : 0
衰落信道仿真 function r = rayleigh( fd, fs, Ns ) r = rayleigh(fd,fs,N) A Rayleigh fading simulator based on Clarke s Model Creates a Rayleigh random process with PSD determined by the vehicle s speed. INPUTS: fd = doppler frequency set fd = v*cos(theta)/lambda v = velocity (meters per second) lambda = carrier wavelength (meters) theta = angle w/ respect to tangent (radians). fs = sample frequency (Samples per second) Ns = number of samples of the Rayleigh fading process to produce OUTPUTS: r = row vector containing Ns samples of the Rayleigh fading process Author: Matthew C. Valenti Mobile and Portable Radio Research Group Virginia Tech For Academic Use Only-Fading channel simulation
Update
: 2025-02-19
Size
: 3kb
Publisher
:
zhouyi
[
Windows Mobile
]
circle.m
DL : 0
function circle(cx, cy, r, linetype) N = 150 x = zeros(1,N+1) y = zeros(1,N+1) for n=1:N+1 x(n) = cx + r*cos(2*pi*n/N) y(n) = cy + r*sin(2*pi*n/N) end hold on plot(x, y, linetype) hold off -function circle(cx, cy, r, linetype) N = 150 x = zeros(1,N+1) y = zeros(1,N+1) for n=1:N+1 x(n) = cx + r*cos(2*pi*n/N) y(n) = cy + r*sin(2*pi*n/N) end hold on plot(x, y, linetype) hold off
Update
: 2025-02-19
Size
: 1kb
Publisher
:
tristancohn
[
matlab
]
Modeling-Rayleigh-fading-channel-based-on-modifie
DL : 0
This Matlab Code models a Rayleigh fading channel using a modified Jakes channel model. A modified Jakes model chooses slightly different spacings for the scatterers and scales their waveforms using Walsh–Hadamard sequences to ensure zero cross-correlation. \alpha_n = \frac{\pi(n-0.5)}{2M} and \beta_n = \frac{\pi n}{M}, results in the following model, usually termed the Dent model or the modified Jakes model: R(t,k) = \sqrt{\frac{2}{M}} \sum_{n=1}^{M} A_k(n)\left( \cos{\beta_n} + j\sin{\beta_n} \right)\cos{\left(2\pi f_d t \cos{\alpha_n} + \theta_{n}\right)}. The weighting functions A_k(n) are the kth Walsh–Hadamard sequence in n. Since these have zero cross-correlation by design, this model results in uncorrelated waveforms. The phases \,\!\theta_{n} are initialized randomly and have no effect on the correlation properties. Matlab fast Walsh-Hadamard transform function is used to efficiently generate samples using this model.-This Matlab Code models a Rayleigh fading channel using a modified Jakes channel model. A modified Jakes model chooses slightly different spacings for the scatterers and scales their waveforms using Walsh–Hadamard sequences to ensure zero cross-correlation. \alpha_n = \frac{\pi(n-0.5)}{2M} and \beta_n = \frac{\pi n}{M}, results in the following model, usually termed the Dent model or the modified Jakes model: R(t,k) = \sqrt{\frac{2}{M}} \sum_{n=1}^{M} A_k(n)\left( \cos{\beta_n} + j\sin{\beta_n} \right)\cos{\left(2\pi f_d t \cos{\alpha_n} + \theta_{n}\right)}. The weighting functions A_k(n) are the kth Walsh–Hadamard sequence in n. Since these have zero cross-correlation by design, this model results in uncorrelated waveforms. The phases \,\!\theta_{n} are initialized randomly and have no effect on the correlation properties. Matlab fast Walsh-Hadamard transform function is used to efficiently generate samples using this model.
Update
: 2025-02-19
Size
: 2kb
Publisher
:
Manzar Hussain
[
Software Engineering
]
mins
DL : 0
optimazion of R=((θ_1*sin(20*θ_2)+ θ_2*sin(20*θ_1))^2)*cosh(θ_1*sin(10*θ_1))+(( θ_1*cos(10*θ_2)- θ_2*sin(10*θ_1))^2)*cosh(θ_2*cos(20*θ_2)))) with powel
Update
: 2025-02-19
Size
: 3kb
Publisher
:
ashkan irannezhad
[
Software Engineering
]
Desktop
DL : 0
syms y(t) r 2 V odeToVectorField(diff(y, 2) + 0.5*diff(y, 1) - y^3+y^5 r*cos(t)) M matlabFunction(V, vars , { t , Y }) -syms y(t) r 2 V odeToVectorField(diff(y, 2)+ 0.5*diff(y, 1)- y^3+y^5 r*cos(t)) M matlabFunction(V, vars , { t , Y }) sol ode45(M,[0 20],[2 0]) x linspace(0,20,100) y1 d (sol,x,1) y2 d (sol,x,2) plot(x,y1, r- ,x,y2, b: ) legend( y1 , y2 ) xlabel( 时间 ) ylabel( y ) grid on
Update
: 2025-02-19
Size
: 17kb
Publisher
:
黎燕霞
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.