CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - EM GM
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - EM GM - List
[
Other resource
]
EM_GM
DL : 0
% EM algorithm for k multidimensional Gaussian mixture estimation % % Inputs: % X(n,d) - input data, n=number of observations, d=dimension of variable % k - maximum number of Gaussian components allowed % ltol - percentage of the log likelihood difference between 2 iterations ([] for none) % maxiter - maximum number of iteration allowed ([] for none) % pflag - 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none) % Init - structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none) % % Ouputs: % W(1,k) - estimated weights of GM % M(d,k) - estimated mean vectors of GM % V(d,d,k) - estimated covariance matrices of GM % L - log likelihood of estimates %
Update
: 2008-10-13
Size
: 3.34kb
Publisher
:
Shaoqing Yu
[
matlab
]
EM_GM
DL : 0
% EM algorithm for k multidimensional Gaussian mixture estimation % % Inputs: % X(n,d) - input data, n=number of observations, d=dimension of variable % k - maximum number of Gaussian components allowed % ltol - percentage of the log likelihood difference between 2 iterations ([] for none) % maxiter - maximum number of iteration allowed ([] for none) % pflag - 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none) % Init - structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none) % % Ouputs: % W(1,k) - estimated weights of GM % M(d,k) - estimated mean vectors of GM % V(d,d,k) - estimated covariance matrices of GM % L - log likelihood of estimates %- EM algorithm for k multidimensional Gaussian mixture estimation Inputs: X (n, d)- input data, n = number of observations, d = dimension of variable k- maximum number of Gaussian components allowed ltol- percentage of the log likelihood difference between 2 iterations ([] for none) maxiter- maximum number of iteration allowed ([] for none) pflag- 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none) Init- structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none) Ouputs: W (1, k)- estimated weights of GM M (d, k)- estimated mean vectors of GM V (d, d, k)- estimated covariance matrices of GM L- log likelihood of estimates
Update
: 2025-02-19
Size
: 3kb
Publisher
:
Shaoqing Yu
[
Speech/Voice recognition/combine
]
gmm
DL : 0
fast EM GM algorithm solving long computation time in matlab
Update
: 2025-02-19
Size
: 14kb
Publisher
:
Pavol Mulinka
[
matlab
]
GM_EM
DL : 0
不错的GM_EM代码。用于聚类分析等方面。- GM_EM- fit a Gaussian mixture model to N points located in n-dimensional space. Note: This function requires the Statistical Toolbox and, if you wish to plot (for k = 2), the function error_ellipse Elementary usage: GM_EM(X,k)- fit a GMM to X, where X is N x n and k is the number of clusters. Algorithm follows steps outlined in Bishop (2009) Pattern Recognition and Machine Learning , Chapter 9. Additional inputs: bn_noise- allow for uniform background noise term ( T or F , default T ). If T , relevant classification uses the (k+1)th cluster reps- number of repetitions with different initial conditions (default = 10). Note: only the best fit (in a likelihood sense) is returned. max_iters- maximum iteration number for EM algorithm (default = 100) tol- tolerance value (default = 0.01) Outputs idx- classification/labelling of data in X mu- GM centres
Update
: 2025-02-19
Size
: 3kb
Publisher
:
朱魏
[
Other
]
AVL_tree
DL : 0
在计算机科学中,AVL树是最先发明的自平衡二叉查找树。AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它。 -In computer science, AVL tree is a self-balancing binary search tree first invented. AVL tree is named after its inventor GM Adelson-Velsky and EM Landis, they published a paper in 1962 that it " An algorithm for the organization of information" in.
Update
: 2025-02-19
Size
: 8kb
Publisher
:
wlx
[
Other
]
EM_GM
DL : 0
EM-GM 算法,可用,并且较好,适合使用,-Em-GM method and can be used.
Update
: 2025-02-19
Size
: 3kb
Publisher
:
wang
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.