Welcome![Sign In][Sign Up]
Location:
Search - EM algorithm K gaussian

Search list

[Other resourceEM_GM

Description: % EM algorithm for k multidimensional Gaussian mixture estimation % % Inputs: % X(n,d) - input data, n=number of observations, d=dimension of variable % k - maximum number of Gaussian components allowed % ltol - percentage of the log likelihood difference between 2 iterations ([] for none) % maxiter - maximum number of iteration allowed ([] for none) % pflag - 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none) % Init - structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none) % % Ouputs: % W(1,k) - estimated weights of GM % M(d,k) - estimated mean vectors of GM % V(d,d,k) - estimated covariance matrices of GM % L - log likelihood of estimates %
Platform: | Size: 3416 | Author: Shaoqing Yu | Hits:

[matlabEM_GM

Description: % EM algorithm for k multidimensional Gaussian mixture estimation % % Inputs: % X(n,d) - input data, n=number of observations, d=dimension of variable % k - maximum number of Gaussian components allowed % ltol - percentage of the log likelihood difference between 2 iterations ([] for none) % maxiter - maximum number of iteration allowed ([] for none) % pflag - 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none) % Init - structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none) % % Ouputs: % W(1,k) - estimated weights of GM % M(d,k) - estimated mean vectors of GM % V(d,d,k) - estimated covariance matrices of GM % L - log likelihood of estimates %- EM algorithm for k multidimensional Gaussian mixture estimation Inputs: X (n, d)- input data, n = number of observations, d = dimension of variable k- maximum number of Gaussian components allowed ltol- percentage of the log likelihood difference between 2 iterations ([] for none) maxiter- maximum number of iteration allowed ([] for none) pflag- 1 for plotting GM for 1D or 2D cases only, 0 otherwise ([] for none) Init- structure of initial W, M, V: Init.W, Init.M, Init.V ([] for none) Ouputs: W (1, k)- estimated weights of GM M (d, k)- estimated mean vectors of GM V (d, d, k)- estimated covariance matrices of GM L- log likelihood of estimates
Platform: | Size: 3072 | Author: Shaoqing Yu | Hits:

[AI-NN-PREM_GM

Description: 针对于K维高斯混合模型估计的期望最大算法-EM algorithm for k multidimensional Gaussian mixture estimation
Platform: | Size: 1024 | Author: scaning | Hits:

[matlabGM_EM

Description: 不错的GM_EM代码。用于聚类分析等方面。- GM_EM- fit a Gaussian mixture model to N points located in n-dimensional space. Note: This function requires the Statistical Toolbox and, if you wish to plot (for k = 2), the function error_ellipse Elementary usage: GM_EM(X,k)- fit a GMM to X, where X is N x n and k is the number of clusters. Algorithm follows steps outlined in Bishop (2009) Pattern Recognition and Machine Learning , Chapter 9. Additional inputs: bn_noise- allow for uniform background noise term ( T or F , default T ). If T , relevant classification uses the (k+1)th cluster reps- number of repetitions with different initial conditions (default = 10). Note: only the best fit (in a likelihood sense) is returned. max_iters- maximum iteration number for EM algorithm (default = 100) tol- tolerance value (default = 0.01) Outputs idx- classification/labelling of data in X mu- GM centres
Platform: | Size: 3072 | Author: 朱魏 | Hits:

[Graph programEM-suanfa-hunhegaosi

Description: em算法计算混合高斯模型的参数估计,极大似然,EM算法用于K均值问题的参数估计。MATLAB实现有代码-em algorithm Gaussian mixture model parameter estimation, maximum likelihood parameter estimation for K-means problem EM algorithm. MATLAB implementation code
Platform: | Size: 228352 | Author: | Hits:

[matlabEM_GM

Description: EM algorithm for k multidimensional Gaussian mixture estimation
Platform: | Size: 3072 | Author: Леля | Hits:

[EditorEM_GM

Description: EM algorithm for k multidimensional Gaussian mixture estimation
Platform: | Size: 2048 | Author: hagacom | Hits:

[OtherEM-Probability

Description: 多维的概率估算,用EM算法,可直接使用.-EM algorithm for k multidimensional Gaussian mixture estimation
Platform: | Size: 2161664 | Author: 甘继来 | Hits:

CodeBus www.codebus.net