Location:
Search - Gauss-Legendre
Search list
Description: Gauss-Legendre 采用五点 Gauss-Legendre 求积公式计算定积分,
Platform: |
Size: 33901 |
Author: linnan |
Hits:
Description: 用gauss-legendre方法计算积分的近似值
Platform: |
Size: 1444 |
Author: 东海公园 |
Hits:
Description: 提供C++完成高斯坐标与大地坐标转换源码,请指教-provide complete Gauss coordinate geodetic coordinates with the source code conversion, please enlighten
Platform: |
Size: 2048 |
Author: 曹磊 |
Hits:
Description: 此程序包含求任意点高斯积分节点和对应的Gauss的求解系数(同时也编写了Lagrange插值公式)-for this procedure include arbitrary point Gaussian integral node and the corresponding Gauss coefficient of the solution (also prepared Lagrange interpolation formula)
Platform: |
Size: 1024 |
Author: 张俊杰 |
Hits:
Description: Legendre正交多项式拟合,可对任意曲线进行拟合-Legendre polynomial fitting, right arbitrary curve fitting
Platform: |
Size: 1024 |
Author: zwlin |
Hits:
Description: 利用高斯-勒让德多项式计算
sin(x+y)在矩形区域的积分-use Gauss- Legendre polynomials calculated sin (x y) in the rectangular region of Integral
Platform: |
Size: 1024 |
Author: bug |
Hits:
Description: 数值分析 求积分算法源码,VC++,龙贝格求积算法,高斯-勒让德求积算法-Integral Algorithm for Numerical Analysis of source code, VC++, Romberg quadrature algorithm, Gauss- Legendre quadrature algorithm
Platform: |
Size: 172032 |
Author: GYZ |
Hits:
Description: Gauss-Legendre 采用五点 Gauss-Legendre 求积公式计算定积分,-Gauss-Legendre using five-point Gauss-Legendre quadrature formula for calculating the definite integral,
Platform: |
Size: 33792 |
Author: linnan |
Hits:
Description: 高斯(Gauss)求积公式,介绍了高斯公式的详细的算法。
Platform: |
Size: 121856 |
Author: dadda |
Hits:
Description: 用gauss-legendre方法计算积分的近似值-Gauss-legendre with integral approximation method
Platform: |
Size: 1024 |
Author: 东海公园 |
Hits:
Description: 基于legendre矩的尺度不变性matlab代码,压缩包解压时不能有密码。-Based on scale invariance legendre moments matlab code, when extracting compressed package should not have a password.
Platform: |
Size: 153600 |
Author: Ry |
Hits:
Description: This GUI can be used by entering nu at the MATLAB command prompt. The user can either select a function (f(x)) of their choice or a statistical distribution probability distribution function to plot over a user defined range. The function s integral can be evaluated over a user defined range by using: The composite trapezium, simpsons and gauss-legendre rules. This is useful for calculating accurate probabilities that one might see in statistical tables.
Platform: |
Size: 12288 |
Author: 徐亮 |
Hits:
Description: 一个求函数积分的工具(c/c++写的,用Gauss/legendre方法)-A tool for function points [c/c++ written with Gauss/legendre method]
Platform: |
Size: 1024 |
Author: lixiaohui |
Hits:
Description: matlab实现gauss型积分公式,取直交多项式为lengendre多项式,由三项递推公式得出-To achieve the gauss-legendre integral formula in matlab which is founded by recursive formula.
Platform: |
Size: 1024 |
Author: 孙莉 |
Hits:
Description: Language 求已知数据点的拉格朗日插值多项式
Atken 求已知数据点的艾特肯插值多项式
Newton 求已知数据点的均差形式的牛顿插值多项式
Newtonforward 求已知数据点的前向牛顿差分插值多项式
Newtonback 求已知数据点的后向牛顿差分插值多项式
Gauss 求已知数据点的高斯插值多项式
Hermite 求已知数据点的埃尔米特插值多项式
SubHermite 求已知数据点的分段三次埃尔米特插值多项式及其插值点处的值
SecSample 求已知数据点的二次样条插值多项式及其插值点处的值
ThrSample1 求已知数据点的第一类三次样条插值多项式及其插值点处的值
ThrSample2 求已知数据点的第二类三次样条插值多项式及其插值点处的值
ThrSample3 求已知数据点的第三类三次样条插值多项式及其插值点处的值
BSample 求已知数据点的第一类B样条的插值
DCS 用倒差商算法求已知数据点的有理分式形式的插值分式
Neville 用Neville算法求已知数据点的有理分式形式的插值分式
FCZ 用倒差商算法求已知数据点的有理分式形式的插值分式
DL 用双线性插值求已知点的插值
DTL 用二元三点拉格朗日插值求已知点的插值
DH 用分片双三次埃尔米特插值求插值点的z坐标
-chazhi
Platform: |
Size: 10240 |
Author: 舞蛳 |
Hits:
Description: 复化的Gauss-legendre公式,自己写的,还有推导过程-Re-oriented Gauss-legendre formula, wrote it myself, as well as derivation
Platform: |
Size: 38912 |
Author: zhaoxuan |
Hits:
Description: os : window vista 32bit
compiler : visual c++ 6.0
Gauss-Legendre Quadrature
nPoint = 2,3,4,....,16
Platform: |
Size: 246784 |
Author: Eunsoo Na |
Hits:
Description: The numerical integration methods described so far are based on a rather simple choice of evaluation points
for the function f(x). They are particularly suited for regularly tabulated data, such as one might measure in a
laboratory, or obtain from computer software designed to produce tables. If one has the freedom to choose
the points at which to evaluate f(x), a careful choice can lead to much more accuracy in evaluating the
integral in question. We shall see that this method, called Gaussian or Gauss-Legendre integration, has one
significant further advantage in many situations. In the evaluation of an integral on the interval to , it is
Platform: |
Size: 137216 |
Author: Sid |
Hits:
Description: 任意三角形上的任意阶Gauss积分程序
算法详见参考文献
H.T. Rathod, K.V. Nagaraja, B. Venkatesudu, N.L. Ramesh, Gauss Legendre quadrature over a triangle, J. Ind. Inst. Sci. 84 (2004)
183–188.-Gauss Legendre quadrature over any triangle
Platform: |
Size: 2048 |
Author: pankejia |
Hits:
Description: Função integral de Gauss Legendre para um círculo. Script para Matlab.
Platform: |
Size: 543 |
Author: LeonardoBahia |
Hits: