Location:
Search - Haar number
Search list
Description: This zip file contains source code and windows executables for carrying out face detection on a gray scale image. The code implements Viola-Jones adaboosted algorithm for face detection by providing a mex implementation of OpenCV s face detector. Instructions for use and for compiling can be found in the Readme file.
Usage:
FaceDetect (<Haar Cascase XML file>, <Gray scale Image>)
The function returns Nx4 matrix. In case no faces were detected, N=1 and all four entries are -1. Otherwise, N=number of faces in the image and the vector contains the x, y, width and height information of the face.
Example,
A = imread ( lena.jpg , JPG )
Img = double (rgb2gray(A))
Face = FaceDetect( haarcascade_frontalface_alt2.xml ,Img)
Platform: |
Size: 1295516 |
Author: ruan |
Hits:
Description: A Matlab Tour of Second Generation Bandelets
附有每部分代码的说明
function x = perform haar transform(x, dir);
x = x(:); % to be sure we have a column vector
J = floor( log2(length(x)) ); % number of scales
if dir==1 % forward transform
for j=1:J
c = x(1:2?j-1):end); % previous coarse signal
x(1:2苆:end) = ... % new coarse signal
( c(1:2:end) + c(2:2:end) )/sqrt(2);
x(1+2?j-1):2苆:end) = ... % new details
(c(1:2:end)-c(2:2:end))/sqrt(2);
end
else % backward transform
for j=J:-1:1
y = x(1:2?j-1):end);
x(1:2苆:end) = ...
( y(1:2:end) + y(2:2:end) )/sqrt(2);
x(1+2?j-1):2苆:end) = ...
( y(1:2:end) - y(2:2:end) )/sqrt(2);
end
end
Listing 1: Function perform haar transform
Platform: |
Size: 1072152 |
Author: wuda5566@sina.com |
Hits:
Description: 一个由zafersavas于2008年完成的完全基于VC++6实现的人脸检测和人眼跟踪程序,通过设置相应的参数实现不同的功能。人脸跟踪中使用了camshift算法和Haar算法,眼睛检测中使用了自适应PCA算法和模板匹配算法,还支持文件和网络摄像头两种输入方式,经过试验,检测速度比较快和准确度也比较高。附带demo程序。 使用步骤: 菜单TrackEye Menu --> Tracker Settings 输入源Input Source: video 选择文件输入指定为: ..\Avis\Sample.avi 人脸检测算法(Face Detection Algorithm): Haar Face Detection Algorithm 选中 “Track also Eyes” checkBox 眼睛检测算法(Eye Detection Algorithm): Adaptive PCA 取消选择 “Variance Check” Number of Database Images: 8 Number of EigenEyes: 5 Maximum allowable distance from eyespace: 1200 Face width/eye template width ratio: 0.3 ColorSpace type to use during PCA: CV_RGB2GRAY 瞳孔检测设置(Settings for Pupil Detection) Check “Track eyes in details” and then check “Detect also eye pupils”. Click “Adjust Parameters” button: Enter “120” as the “Threshold Value” Click “Save Settings” and then click “Close” Settings for Snake Check “Indicate eye boundary using active snakes”. Click “Settings for snake” button: Select ColorSpace to use: CV_RGB2GRAY Select Simple thresholding and enter 100 as the “Threshold value” Click “Save Settings” and then click “Close”
Platform: |
Size: 204022 |
Author: sichuanlu |
Hits:
Description: This zip file contains source code and windows executables for carrying out face detection on a gray scale image. The code implements Viola-Jones adaboosted algorithm for face detection by providing a mex implementation of OpenCV s face detector. Instructions for use and for compiling can be found in the Readme file.
Usage:
FaceDetect (<Haar Cascase XML file>, <Gray scale Image>)
The function returns Nx4 matrix. In case no faces were detected, N=1 and all four entries are -1. Otherwise, N=number of faces in the image and the vector contains the x, y, width and height information of the face.
Example,
A = imread ( lena.jpg , JPG )
Img = double (rgb2gray(A))
Face = FaceDetect( haarcascade_frontalface_alt2.xml ,Img)
-This zip file contains source code and windows executables for carrying out face detection on a gray scale image. The code implements Viola-Jones adaboosted algorithm for face detection by providing a mex implementation of OpenCV s face detector. Instructions for use and for compiling can be found in the Readme file.
Usage:
FaceDetect (<Haar Cascase XML file>, <Gray scale Image>)
The function returns Nx4 matrix. In case no faces were detected, N=1 and all four entries are-1. Otherwise, N=number of faces in the image and the vector contains the x, y, width and height information of the face.
Example,
A = imread ( lena.jpg , JPG )
Img = double (rgb2gray(A))
Face = FaceDetect( haarcascade_frontalface_alt2.xml ,Img)
Platform: |
Size: 1295360 |
Author: ruan |
Hits:
Description: Adaboost算法的基本思想是:利用大量的分类能力一般的弱分类器(weaker
ifier)通过一定的方法叠加(boost)起来,构成一个分类能力很强的强分类器
眼eClassifier),再将若干个强分类器串联成为分级分类器(ClassifierCaseade)
图像搜索检测。本文就是利用Adaboost算法将由类haar特征生成的弱分类器
成为强分类器,再将强分类器串联成为分级分类器。
-Adaboost algorithm basic idea is: the ability to use the general classification of a large number of weak classifier (weakerifier) through a certain method of superposition (boost), and constitute a strong Category strong classifier eyes eClassifier), then a number of strong Category connected in series to become hierarchical classifier (ClassifierCaseade) image search detection. Adaboost algorithm is to use this article will be generated characteristics category haar weak classifier become strong classifier, and then become a strong tandem Classifier Classifier classification.
Platform: |
Size: 8192 |
Author: wangxuyang |
Hits:
Description: 大量大小规格一样的照片,车辆和公路背景。图片可用来训练Haar特征-A large number of photographs of the same size specifications, vehicle and road background. Images can be used to train the Haar feature
Platform: |
Size: 63938560 |
Author: echo |
Hits:
Description: 我收集的基于Haar的对象识别的一些中文论文,结合起来看可以方便理解-I collect Haar-based object recognition in a number of Chinese papers, combined, can easily understand
Platform: |
Size: 12341248 |
Author: liurui |
Hits:
Description: 这个是用来计算Haar-like特征数目的,用MATLAB求的某一个矩形特征的数目-This is used to calculate the number of Haar-like features, with the MATLAB find a certain number of characteristics of a rectangular
Platform: |
Size: 304128 |
Author: 冀国亮 |
Hits:
Description: this a face detector using haar like features
this is an extension of viola jones model with lesser number of features or subset of features-this is a face detector using haar like features
this is an extension of viola jones model with lesser number of features or subset of features
Platform: |
Size: 1064960 |
Author: somesh |
Hits:
Description: 通过设计Visual C程序源码对简单易懂的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波与Haar小波变换,从而的到小波分解系数;再通过改变分解的到的各层高频系数数进行信号的小波重构达到消噪噪的目的。在这一程序源码实现的过程中能直观地理解信号小波分解重构的过程与在信号消噪中的重要作用,和在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。 可直接
-Design Visual C program source code on a simple one-dimensional signal with a Gaussian white noise Daubechies wavelet, Morlet wavelet and Haar wavelet transform, and thus to the wavelet coefficients and then change the decomposition to each storey wavelet reconstruction frequency coefficient of the number of signal to noise canceling noise. In the process of realization of this program source code can be intuitively understood the signal wavelet decomposition and reconstruction process and an important role in signal denoising, and the selection coefficient in the high frequency coefficients of the layers of the weight of processing noise cancellation signal impact. Can be directly
Platform: |
Size: 160768 |
Author: xlli |
Hits:
Description: Adaboost算法的基本思想是:利用大量的分类能力一般的弱分类器(weakerifier)通过一定的方法叠加(boost)起来,构成一个分类能力很强的强分类器眼eClassifier),再将将若干个强分类器串联成为分级分类器(ClassifierCaseade)图像搜索检测。本文就是利用Adaboost算法将由类haar特征生成的弱分类器成为强分类器,再将强分类器串联成为分级分类器。
-The basic idea of Adaboost algorithm is: classification ability of a large number of weak classifier (weakerifier) superimposed by a certain method (boost) together constitute a classification of very strong classifier the eye eClassifier), then will a number of strong The classifiers series Classification (ClassifierCaseade) image search detection. This article is the use of a weak classifier Adaboost algorithm will be generated by the class of haar features a strong classifier, then the strong classifier in series to become a hierarchical classifier.
Platform: |
Size: 8192 |
Author: chenhebingb |
Hits:
Description: 初步認識哈爾小波轉換,使用哈爾小波對圖片做降解析度(可調階層數)-Initial understanding of Haar wavelet transform using Haar wavelet resolution pictures do drop (adjustable hierarchy number)
Platform: |
Size: 1312768 |
Author: 劉俊麟 |
Hits:
Description: 使用Haar特征提取算法,根据选取的特征点类型,查找特征点,并显示出所查找出的特征点的个数-Using Haar algorithm,Base on the type of the Feature,find the feature points,and show out the number of the feature points.
Platform: |
Size: 69632 |
Author: new pp |
Hits:
Description: Haar-like特征遍历,并求取不同特征在24*24图片下的特征个数-Haar-like feature traversal, and obtains the number of different features in the feature image of 24* 24
Platform: |
Size: 1024 |
Author: wangzr |
Hits:
Description: haar小波变换,提取大量特征用于图像的分类识别(Extracting a large number of features for image classification)
Platform: |
Size: 6144 |
Author: w3c
|
Hits: