CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - Henon
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - Henon - List
[
Other resource
]
henon
DL : 0
将henon映射由牛顿算法进行控制,求出其周期2的点,这个例子很有代表性-to Newton by mapping algorithm control, get two of its cycle, this example very representative
Update
: 2008-10-13
Size
: 129.88kb
Publisher
:
ham
[
Other resource
]
Henon
DL : 1
实现 henon混沌仿真 实现 henon混沌仿真
Update
: 2008-10-13
Size
: 5.19kb
Publisher
:
matlab
[
Other resource
]
henon
DL : 0
给出Henon的模型x(i+1)=1+y(i)-a*x(i)^2 y(i+1)=b*x(i)
Update
: 2008-10-13
Size
: 620byte
Publisher
:
Aachen
[
Special Effects
]
henon
DL : 0
Henon吸引子 Henon吸引子是混沌和分形的著名例子,迭代 模型为 xk+1=1+ax2k+byk, yk+1= xk. 最常见的参数取值为a=1.4,b=0.3 .此时迭代模 型为 xk+1=1+yk-1.4x2k, yk+1=0.3xk.
Update
: 2008-10-13
Size
: 2.95kb
Publisher
:
何任飞
[
SourceCode
]
Chaos Control in the Henon Map
DL : 0
matlab编写的,Henon映射的混沌控制
Update
: 2011-07-21
Size
: 622byte
Publisher
:
nyjyrff@yeah.net
[
AI-NN-PR
]
Henon_chaos
DL : 0
产生Henon混沌时间序列的matlab程序-have Henon chaotic time series Matlab procedures
Update
: 2025-02-19
Size
: 1kb
Publisher
:
陆振波
[
Algorithm
]
henon
DL : 0
将henon映射由牛顿算法进行控制,求出其周期2的点,这个例子很有代表性-to Newton by mapping algorithm control, get two of its cycle, this example very representative
Update
: 2025-02-19
Size
: 244kb
Publisher
:
ham
[
Documents
]
dynamicalsystem
DL : 1
几种常见混沌时间序列matlab实现 1)chua flow 2)duffing flow 3)Rossler flow 4)Lorenz flow 5)ikeda flow 6)Mackey_Glass flow 7)logistic map 8)henon map 9)Quadratic map(二次图) 也欢迎大家提供更多的混沌方程或映射的经典matlab实现。 -several common chaotic time series to achieve a Matlab) chua flow 2) duffin 3 g flow) Rossler flow 4) Lorenz flow 5) ikeda ss w 6) 7 Mackey_Glass flow) Logistic map 8) henon m ap 9) Quadratic map (Second) of welcome we provide more chaotic or mapping equations by the Code Implementation of Matlab.
Update
: 2025-02-19
Size
: 21kb
Publisher
:
呆雁
[
WEB Code
]
LyapunovExponents
DL : 0
文件说明: ---------------------------------------------- Main_LargestLyapunov_Rosenstein1.m 程序主文件1,直接运行此文件即可,Logistic 序列 Main_LargestLyapunov_Rosenstein2.m 程序主文件2,直接运行此文件即可,Henon 序列 Main_LargestLyapunov_Rosenstein3.m 程序主文件3,直接运行此文件即可,Lorenz 吸引子 LorenzData.dll 产生 Lorenz 离散序列 PhaSpaRecon.m 相空间重构 Lyapunov_rosenstein_2.dll Lyapunov 计算主函数 buffer_run1.dll 计算缓存1 buffer_run2.dll 计算缓存2 buffer_run3.dll 计算缓存3 -documents :------------------------- Main_LargestLyapunov_Rosenstein1.m procedures main file a direct operation of this document can be, Logistic sequence Main_LargestLyapunov_Rosenstei n2.m procedures two main documents directly running this file can be, Henon Main_LargestLyapunov_Rosenstein3 sequence. m procedure three main file directly running this file can be, Lorenz attractor LorenzData.dll have Lorenz discrete sequence PhaSp aRecon.m reconstruction phase space Lyapunov_rosenstein_2.dll Ly apunov calculation main function buffer_run1.dll calculated a cache buffer_ru n2.dll calculated Cache Cache two buffer_run3.dll calculation 3
Update
: 2025-02-19
Size
: 99kb
Publisher
:
ming
[
matlab
]
henon_lyapunonv
DL : 1
这是一个混沌理论中重要的henon映射lyapunov的程序。-Chaos Theory important henon lyapunov mapping procedures.
Update
: 2025-02-19
Size
: 1kb
Publisher
:
liuwei
[
Other
]
jacobianmatrix
DL : 0
he power method will be applied to the jacobian matrix of the 2-D henon map to approximate the first Lyapunov exponent by creating a graph of ln|yn| vs. n, where n is the number of iterations of the power method and yn = 1/n*ln|DG^n(xo)*yo|. The slope will be an approximation to the largest Lyapunov exponent.-he power method will be applied to the jacob ian matrix of the 2-D map to approximate henon th e first Lyapunov exponent by creating a graph of ln | yn | vs. n, where n is the number of iterations of the power m ethod and yn = a/n* ln | DG ^ n (xo)* yo |. The slope w ill be an approximation to the largest Lyapunov exponent.
Update
: 2025-02-19
Size
: 1kb
Publisher
:
杨蒙
[
Graph program
]
ChaosAttractors
DL : 0
混沌优化程序,各种混沌优化的例子,时分混沌,chengs,logistic,duffing,henon,loren2.-chaos optimization procedures, various examples of chaos optimization, chaotic hours, chengs, logistic, Duffing, henon, loren2.
Update
: 2025-02-19
Size
: 16kb
Publisher
:
fanghui20006
[
matlab
]
Henon
DL : 0
实现 henon混沌仿真 实现 henon混沌仿真 -Realize chaotic Henon Henon chaotic Simulation Simulation realize realize realize Henon chaotic Henon chaotic simulation simulation
Update
: 2025-02-19
Size
: 5kb
Publisher
:
matlab
[
matlab
]
henon
DL : 1
给出Henon的模型x(i+1)=1+y(i)-a*x(i)^2 y(i+1)=b*x(i) -Henon model given x (i+ 1) = 1+ Y (i)-a* x (i) ^ 2 y (i+ 1) = b* x (i)
Update
: 2025-02-19
Size
: 1kb
Publisher
:
Aachen
[
Special Effects
]
henon
DL : 0
Henon吸引子 Henon吸引子是混沌和分形的著名例子,迭代 模型为 xk+1=1+ax2k+byk, yk+1= xk. 最常见的参数取值为a=1.4,b=0.3 .此时迭代模 型为 xk+1=1+yk-1.4x2k, yk+1=0.3xk. -Henon attractor Henon attractor is chaotic and fractal famous examples, iterative model xk+ 1 = 1+ Ax2k+ Byk, yk+ 1 = xk. The most common values for the parameters of a = 1.4, b = 0.3 . At this point iterative model xk+ 1 = 1+ yk-1.4x2k, yk+ 1 = 0.3xk.
Update
: 2025-02-19
Size
: 3kb
Publisher
:
何任飞
[
Windows Develop
]
henon
DL : 0
用于绘制混沌图形的henon程序,其中有著名的罗伦兹图-Chaos for graphics rendering henon procedures, including the famous Lorenz map
Update
: 2025-02-19
Size
: 8kb
Publisher
:
liu
[
Other
]
henon
DL : 0
chaotic generator of henon by xilinx sysgen and simulink
Update
: 2025-02-19
Size
: 13kb
Publisher
:
merahlah
[
Other
]
henon
DL : 0
混沌工具函数 function [x,y]=henon(n,level,a,b,x0,y0)-chaos function function [x,y]=henon(n,level,a,b,x0,y0)
Update
: 2025-02-19
Size
: 1kb
Publisher
:
chemgze
[
matlab
]
Lyapunov-exponent-of-Henon-map
DL : 1
计算二维Henon映射的Lyapunov指数 -Comput the lyapunov exponent of two dimension Henon map
Update
: 2025-02-19
Size
: 3kb
Publisher
:
Ping Liu
[
matlab
]
Henon-Lyapunov
DL : 0
修正后的二维Henon映射的Lyapunov指数计算及Lyapunov指数谱图。(The Lyapunov exponent calculation and Lyapunov exponent spectrum of the modified two-dimensional Henon map.)
Update
: 2025-02-19
Size
: 1kb
Publisher
:
hhyyjj
«
1
2
3
4
5
6
»
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.