Location:
Search - IDL wavelet
Search list
Description: 基于图形工作站的IDL程序代码,彩色应用,矩阵操作,插值,图像处理,信号处理,小波变换,mesh对象操作,打印对象,对象图形输出,对象移动旋转,图像对象,光源设置,影像纹理动画: dxf对象显示,对象彩色
自定义类并应用,数据库应用。-Graphics workstations based on the IDL code, color applications, matrix operations, interpolation, image processing, signal processing, wavelet transform, mesh object operations, printing object, the object graphics output, the target mobile rotation, image object, light settings, image texture animation : dxf object showed that the object type and color custom applications, database applications.
Platform: |
Size: 98304 |
Author: liwei |
Hits:
Description:
Platform: |
Size: 2048 |
Author: xxl |
Hits:
Description: IDL 小波融合程序,将sav文件放在add_add文件夹下。-IDL Wavelet fusion procedure,add the sav file to $ENVI_DIR/save_add folder.
Platform: |
Size: 737280 |
Author: zhang |
Hits:
Description: Libary Wavelet for IDL
Platform: |
Size: 22528 |
Author: blackangel |
Hits:
Description: 小波对时间序列进行频谱分析,有友好的界面和源码,程序用IDL语言编写而成。-It is a favarable wavelet spectra analysis tools.
Platform: |
Size: 863232 |
Author: huangxiaojie |
Hits:
Description: 介绍了小波域的小波强制消噪方法,用IDL语言实现-Introduced the wavelet domain denoising method of wavelet force, using IDL language
Platform: |
Size: 1024 |
Author: yangyang |
Hits:
Description: wavelet code written in IDL program
Platform: |
Size: 23552 |
Author: Tao Wang |
Hits:
Description: HIS小波融合的简单方法。运行没有问题,程序写得很简单-A very simple the wavelet fusion procedures, with the most standard fusion. Run without problems.
Platform: |
Size: 2908160 |
Author: 邹邹 |
Hits:
Description: 这本书在稀疏的多尺度图像和信号处理提出了艺术状态,包括线性多尺度变换,如小波,脊波和曲波变换、非线性、多尺度变换基于中值和数学形态学算子。最近的稀疏性和形态多样性的概念描述和利用各种问题,如去噪,反问题正规化,稀疏信号分解,盲源分离,压缩感知。
这本书的理论和实践研究相结合的领域,如天文学、生物学、物理学、数字媒体应用和取证。最后一章探讨了信号处理中的一个范式转换,表明以前的信息取样和提取的限制可以用非常重要的方法加以克服。
MATLAB和IDL代码伴随这些方法和应用程序重现。
实验并说明了在相关网站上可下载的研究的推理和方法。(This book presents the state of the art in sparse and multiscale image and signal processing,
covering linear multiscale transforms, such as wavelet, ridgelet, or curvelet transforms,
and non-linear multiscale transforms based on the median and mathematical
morphology operators. Recent concepts of sparsity and morphological diversity are described
and exploited for various problems such as denoising, inverse problem regularization,
sparse signal decomposition, blind source separation, and compressed sensing.
This book weds theory and practice in examining applications in areas such as astronomy,
biology, physics, digital media, and forensics. A final chapter explores a paradigm
shift in signal processing, showing that previous limits to information sampling and
extraction can be overcome in very significant ways.)
Platform: |
Size: 30863360 |
Author: lxfei73 |
Hits: