Description: 能计算用户输入的聚类,并进行K分。
输出的结果为每次计算的中心点的坐标和每个点到中心的距离-Can be entered by the user computing cluster, and K points. Output of the calculation for each of the coordinates of the center and each point the distance to the center Platform: |
Size: 695296 |
Author:黄伟 |
Hits:
Description: 自己根据K-MEANS思想在MATLAB下实现的彩色图像分割算法程序,用最普通的语句实现,通俗易懂。可以直接用于对彩色细胞图像的分割,分割结果比较准确,-K-MEANS in accordance with their own ideas in MATLAB to achieve color image segmentation algorithm based on the procedures used to achieve the most common statement, user-friendly. Can be directly used for color cell image segmentation, more accurate segmentation results, Platform: |
Size: 280576 |
Author:王悦东 |
Hits:
Description: K-means algorithm in C++
user pre-defined cluster number
input file of data points
output file of final best centroids Platform: |
Size: 4096 |
Author:lawrence |
Hits:
Description: k-means C++ 源代码,
修正原来的错误,
增加的新功能
1、用vector实现其存储
2、直接在程序中读取数据集
3、结果可以保存到文件中
4、用户可以输入聚类个数
5、初始聚类中心随机选择(代码自动随机)-k-means C++ source code, fixes the original error, the increase in new features 1, 2, with the vector to achieve its store directly in the program to read data set 3, the results can be saved to a file 4, the user can enter the number of clusters 5, the initial cluster centers randomly selected (code auto-random) Platform: |
Size: 5120 |
Author:烈马 |
Hits:
Description: 用C++语言编写的MFC程序,用K均值和ISODATA算法实现BMP影像的自动分类。提供良好的交互接口,用户可在图像上选择初始聚类中心和设定分类相关参数。适合作为初学者学习分类算法和MFC编程的参考资料。提供了文档说明程序的操作过程。-MFC program with C++ language, K-means and ISODATA algorithm to achieve the automatic classification of BMP images. Provide a good interactive interface on the image, the user can select the relevant parameters of the initial cluster centers and set classification. Suitable for beginners to learn the classification algorithm and MFC programming reference. The document describes the procedure for a. Platform: |
Size: 2475008 |
Author:罗晋 |
Hits:
Description: K-均值聚类算法,属于无监督机器学习算法,发现给定数据集的k个簇的算法。
首先,随机确定k个初始点作为质心,然后将数据集中的每个点分配到一个簇中,为每个点找距其最近的质心,
将其分配给该质心对应的簇,更新每一个簇的质心,直到质心不在变化。
K-均值聚类算法一个优点是k是用户自定义的参数,用户并不知道是否好,与此同时,K-均值算法收敛但是聚类效果差,
由于算法收敛到了局部最小值,而非全局最小值。
K-均值聚类算法的一个变形是二分K-均值聚类算法,该算法首先将所有点作为一个簇,然后将该簇一分为二,
之后选择其中一个簇继续进行划分,选择哪一个簇进行划分取决于对其划分是否可以最大程度降低SSE的值。
Yahoo有一个placefinder的API可以用于转换地址和经度纬度。
-K-means clustering algorithm, which belongs to unsupervised machine learning algorithms for a given data set k clusters algorithm found.
First, k is randomly determined as a centroid of the initial point, and then assigning each data point to a cluster set, find a nearest point to each centroid,
It is assigned to the corresponding cluster centroids, update the centroids of each cluster until the centroid not changed.
K-means clustering algorithm k is an advantage of user-defined parameters, the user does not know whether it is good, at the same time, K-Means clustering algorithm converges but poor results,
Since the algorithm converges to a local minimum instead of the global minimum.
A variant K-means clustering algorithm is K-means clustering dichotomy algorithm will first of all points as a cluster, then the cluster into two,
After selecting one of the cluster continues to be divided, to choose which one cluster is divided depends on whether you can reduce the value of t Platform: |
Size: 2048 |
Author:iihaozl |
Hits:
Description: k均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。-K-means clustering is one of the most famous partitioning clustering algorithm, due to the simplicity and efficiency makes him become the most widely used all clustering algorithm. Given a collection of data points and the cluster number k, k specified by the user, k-means algorithm based on a certain distance function data points into the k cluster. Platform: |
Size: 5120 |
Author:罗汉 |
Hits:
Description: k-means属于划分法的聚类算法,能够见数值样本按照一定的规律划分为用户指定的类别(The goal of the algorithm is to partition a given dataset into a user-specified number of clusters, k, and obtain the similarity between samples of the same cluster rather than the different clusters) Platform: |
Size: 5120 |
Author:宏超
|
Hits: