CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - Knapsack Problem Matlab program
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - Knapsack Problem Matlab program - List
[
Data structs
]
beibao
DL : 0
背包问题运用贪婪算法的matlab 程序实现-Use of greedy algorithm knapsack problem of matlab program
Update
: 2025-02-17
Size
: 1kb
Publisher
:
shangsheng
[
matlab
]
xujinpeng-matlab
DL : 0
遗传算法编程求解旅行商问题;图论中最短路问题的Matlab程序实现;背包问题模型的Matlab程序实现。-Genetic Algorithm for Solving Traveling Salesman Problem programming graph theory, shortest path problem in the Matlab program implementation knapsack problem Matlab model implementation process.
Update
: 2025-02-17
Size
: 493kb
Publisher
:
竹子的信仰
[
matlab
]
matlab
DL : 0
不错的程序,欢迎下载,登山算法,解决背包问题,不错-Good program, please download, climbing algorithm to solve knapsack problem, yes
Update
: 2025-02-17
Size
: 2kb
Publisher
:
david
[
AI-NN-PR
]
ConstrainedOptimization
DL : 0
Constrained optimization has been explained with matlab 2007a. This has been explained with various benchmark functions. The main program can be directly applied to knapsack problem and portfolio optimization problem directly. These programs have been written in a menu driven manner.
Update
: 2025-02-17
Size
: 5kb
Publisher
:
missed2010
[
AI-NN-PR
]
39975737MATLAB_gatool
DL : 0
解决0-1背包问题的遗传算法matlab程序,欢迎交流提高。-Solve the 0-1 knapsack problem genetic algorithm matlab program, welcomed the exchange increased.
Update
: 2025-02-17
Size
: 44kb
Publisher
:
孙磊
[
matlab
]
PSO-for-knapsack-problem
DL : 0
pso算法在背包问题中的matlab程序。-pso algorithm in the knapsack problem in the matlab program.
Update
: 2025-02-17
Size
: 18kb
Publisher
:
hancunai
[
matlab
]
aa
DL : 0
在过去的几年中, 背包问题吸引了众多理论研究人员和应用工作者的注意力, 因而得到了广泛而深入的研究。理论方面, 研究兴趣主要来自于该问题简单的结构, 而这种特点既可以深入探索许多组合特性, 又可以通过解决一系列背包子问题来最终求解更为复杂的优化问题。实践方面, 这些问题可以表述许多工业场合的应用, 最典型的应用包括货 物装载、存储分配和资本预算等等。在寻找背包问题可行解的过程中, 出现了众多的算法, 本文是利用MATLAB 程序求背包问题可行解的一种算法。-In the past few years, knapsack problem has attracted many researchers and application of theoretical attention of workers, which has been extensive and in-depth study. Theory, research interest mainly from the simple structure of the problem, and this characteristic combination of both in-depth exploration of many features, but also can solve a series of knapsack sub-problems to solve more complex final optimization problem. Practice, these problems can be expressed in many industrial applications where the most typical applications include cargo loading, storage, distribution and capital budgets, and so on. Knapsack problem in finding feasible solutions in the process, there have been many algorithms, this is the knapsack problem using MATLAB program seeking a feasible solution algorithm.
Update
: 2025-02-17
Size
: 24kb
Publisher
:
hh
[
matlab
]
beibao
DL : 0
这是背包问题的程序,用matlab实现,背包问题是NP完全问题-This is the knapsack problem program, using matlab , knapsack problem is a a NP-complete problem
Update
: 2025-02-17
Size
: 11kb
Publisher
:
a
[
Other
]
modelCenter
DL : 0
粒子群算法和基于ModelCenter求解背包问题的对比研究,包括了matlab版的粒子群算法,ModelCenter程序,以及自己的报告 -Particle swarm optimization algorithm and a comparative study based on ModelCenter knapsack problem, including the matlab version of the particle swarm algorithm, ModelCenter program, and its report
Update
: 2025-02-17
Size
: 2.18mb
Publisher
:
茄子
[
matlab
]
beibaowenti
DL : 0
简单背包问题的程序,使用matlab进行编程,适合零基础者(A program that can do simple Knapsack problem)
Update
: 2025-02-17
Size
: 1kb
Publisher
:
hopeyue
[
Algorithm
]
穷举法求解0-1整数规划的matlab程序
DL : 1
0-1整数规划有很广泛的应用背景,比如指派问题,背包问题等等,实际上TSP问题也是一个0-1问题,当然这些问题都是NP问题,对于规模较大的问题用穷举法是没有办法在可接受的时间内求得最优解的,本程序只不过是一个练习,得意之处是用递归法把所有解都排列出来。(0-1 integer programming has a very wide application background, such as assignment problem, knapsack problem and so on. In fact, TSP problem is also a 0-1 problem. Of course, these problems are NP problems. For large-scale problems, exhaustive method is unable to find the optimal solution in an acceptable time. This program is only an exercise, and the proud point is that all solutions are arranged by recursive method. Come out.)
Update
: 2025-02-17
Size
: 2kb
Publisher
:
末光
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.