Location:
Search - Knn
Search list
Description: 文本分类算法KNN的C#实现源码
Platform: |
Size: 110583 |
Author: talonliu |
Hits:
Description: knn分类程序,基于matlab开发
-Commission classification procedure based on the development of Matlab
Platform: |
Size: 1024 |
Author: bony |
Hits:
Description: knn,即k最近邻算法是模式识别中的一种比较简单而经典的分类算法-knn, k-nearest neighbor pattern recognition algorithm is a relatively simple and classic classification algorithm
Platform: |
Size: 17408 |
Author: 才华 |
Hits:
Description: 基于不断学习的贝叶斯-KNN文本分类算法的设计与实现,给出原始几个类别的文本文件,通过机器学习,获取各个类别文本内容的主要特征,在这个基础上,给出待分类的文件库,系统通过自动分类,对文件库中的文本进行分类,把文件分配到最有可能的类别中。-based learning Bayesian-KNN text classification algorithm design and implementation given several types of the original text file, machine learning, access to all types of text that the key features On this basis, the classification given to the document, the system, through the automatic classification of documents for the text classification, documents distributed to the most likely categories.
Platform: |
Size: 1146880 |
Author: linvg |
Hits:
Description: 朴素贝叶斯(Naive Bayes, NB)算法是机器学习领域中常用的一种基于概率的分类算法,非常简单有效。k近邻法(k-Nearest Neighbor, kNN)[30,31]又称为基于实例(Example-based, Instance-bases)的算法,其基本思想相当直观:Rocchio法来源于信息检索系统,后来最早由Hull在1994年应用于分类[74],从那以后,Rocchio方法就在文本分类中广泛应用起来。-Naive Bayes (Naive Bayes, NB) algorithm is commonly used in the field of machine learning a classification algorithm based on probability is very simple and effective. k neighbor method (k-Nearest Neighbor, kNN) [30,31], also known as case-based (Example-based, Instance-bases) of the algorithm, the basic idea quite intuitive: Rocchio law from the Information Retrieval System, and later was first proposed by the Hull in 1994, applies to classification [74], since then, Rocchio method of classification in the text with extensive application.
Platform: |
Size: 96256 |
Author: 许梁 |
Hits:
Description: knn算法是数据挖掘中的一个常用算法。改算法能够实现分类和聚类。这个程序是KNN算法的一个演示程序,希望对数据挖掘的学习有所帮助。-err
Platform: |
Size: 9216 |
Author: 马飞 |
Hits:
Description: k最近邻分类算法:用C++实现KNN分类-k Nearest Neighbor Classification Algorithm: The C++ realize KNN classification
Platform: |
Size: 303104 |
Author: 徐晓云 |
Hits:
Description: c++课程中要求的实现KNN的问题。解决了数据的产生问题-c++ curriculum requirements realize KNN problem. Solve the problems of data
Platform: |
Size: 986112 |
Author: 周孝琼 |
Hits:
Description: KNN算法用JAVA实现,在WEKA平台上实现-KNN algorithm using JAVA realize, in the WEKA platform realize
Platform: |
Size: 5120 |
Author: longhaoqiu |
Hits:
Description: KNN算法--一种文本分类算法-KNN algorithm- a text classification algorithm
Platform: |
Size: 1024 |
Author: |
Hits:
Description: matlab 源码 KNN classification -matlab source KNN classification
Platform: |
Size: 8192 |
Author: chen ye |
Hits:
Description: knn 方法为k均值聚类用于数据点的分类-KNN method for k-means clustering for the classification of data points
Platform: |
Size: 27648 |
Author: |
Hits:
Description: 支持中文分类,用了三种算法实现,svm、knn、nb-Support the Chinese classification, used the three algorithms, svm, knn, nb
Platform: |
Size: 6254592 |
Author: 乐乐 |
Hits:
Description: 介绍了KNN算法 对数据挖掘的朋友有一定的帮助-Introduced the KNN algorithm to data mining friends will certainly help
Platform: |
Size: 1067008 |
Author: 丁洁 |
Hits:
Description: KNN最近邻分类器和预测器,数据挖掘课程上的作业-KNN nearest neighbor classifier and prediction, data mining courses on the operation
Platform: |
Size: 199680 |
Author: liusong |
Hits:
Description: knn k近邻算法,可选择欧式距离或者曼哈顿距离-knn k nearest neighbor, Euclidean distance or Manhattan can choose the distance
Platform: |
Size: 1024 |
Author: zc |
Hits:
Description: KNN K-nearest neighbor rule for classification -KNN K-nearest neighbor rule for classification
Platform: |
Size: 1024 |
Author: 鲁剑锋 |
Hits:
Description: 模式识别中knn算法的powerpoint,适合初学者-Pattern Recognition Algorithm KNN powerpoint, suitable for beginners
Platform: |
Size: 230400 |
Author: 凌风 |
Hits:
Description: K近邻算法(KNN)的matlab源代码,程序清晰易读-K nearest neighbor (KNN) of matlab source code, procedures legible
Platform: |
Size: 1024 |
Author: skyfly |
Hits:
Description: KNN clustering with php
Platform: |
Size: 4096 |
Author: Nada |
Hits:
« 12
3
4
5
6
7
8
9
10
...
50
»