Location:
Search - Kpca K-MEANS
Search list
Description: 介绍了一种非常实用的特征提取新方法,针对稀疏核主成分分析方法在特征提取中的不足, 提出了一种基于核K- 均值聚类的稀疏核主成分分析( Sparse KPCA) 的特征提取方法用于说话人识别。-Introduced a very useful new method of feature extraction for Sparse Kernel Principal Component Analysis in Feature Extraction of the lack of a kernel-based K-means clustering of sparse kernel principal component analysis (Sparse KPCA) of the feature extraction methods for speaker recognition.
Platform: |
Size: 122880 |
Author: 毋桂萍 |
Hits:
Description: 通过核 K- 均值聚类的方法对语音帧进行聚类 , 由于聚类的中心能够很好地代表类内的特征, 用中心样本帧取代该类, 减少了核矩阵的维数, 然后再采用稀疏 KPCA方法对核矩阵进行特征提取。-Through the nuclear K-means clustering method for clustering of speech frames, the cluster center can be a good representative of the class characteristics of the sample frame to replace the class with the center, reducing the dimension of the nuclear matrix, and then use Sparse KPCA method for feature extraction of the nuclear matrix.
Platform: |
Size: 185344 |
Author: piano |
Hits: