Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - L2 SVM
Search - L2 SVM - List
是一種線性方成的分類器。SVM透過統計的方式將雜亂的資料以NN的方式分成兩類,以便處理。LIBLINEAR is a linear classifier for data with millions of instances and features. It supports L2-regularized logistic regression (LR), L2-loss linear SVM, and L1-loss linear SVM. -Main features of LIBLINEAR include Same data format as LIBSVM, our general-purpose SVM solver, and also similar usage Multi-class classification: 1) one-vs-the rest, 2) Crammer & Singer Cross validation for model selection Probability estimates (logistic regression only) Weights for unbalanced data MATLAB/Octave, Java interfaces
Update : 2025-04-26 Size : 509kb Publisher : 陳彥霖

BSVM解决了支持向量机(SVM),用于解决大型分类和回归问题。 它包括以下方法 一个对一个使用约束约束公式的多类分类 通过解决单一优化问题(再次,有界公式)进行多类分类。 参见我们比较文件的第3节。 使用Crammer和Singer的配方进行多级分类。 参见我们的比较文章第4节。 使用约束约束公式的回归-BSVM solves support vector machines (SVM) for the solution of large classification and regression problems. It includes the following methods One vs. One multi-class classification using a bound-constrained formulation Multi-class classification by solving a single optimization problem (again, a bounded formulation). See Section 3 of our comparison paper. Multi-class classification using Crammer and Singer s formulation. See Section 4 of our comparison paper. Regression using a bound-constrained formulation Multi-class classification using Crammer and Singer s formulation with squared hinge (L2) loss
Update : 2025-04-26 Size : 364kb Publisher :
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.