Welcome![Sign In][Sign Up]
Location:
Search - Least Square inverse

Search list

[Other resource用“时域最小平方误差准则” 设计IIR DF

Description: 试用时域最小平方误差准则(最小平方逆设计)设计一个具有四项系数的IIR DF的系统函数,使其在y(n)=[3,2,1]输入激励下,输出v(n)逼近d(n)=[2,0.2,0.05]。令v(-1)=v(-2)=0。求出v(n)的前8个样值与d(n)进行比较。用matlab实现了此要求。-trial at the least square error domain guidelines (minimum inverse square design) design with a four DF IIR coefficient of the system function, so in y (n) = [3,2,1] incentive to import, export v (n) approximation d (n) = [2,0.2,0.05]. So v (1) = v (2) = 0. Get v (n) of eight samples value d (n) comparisons. Using Matlab realization of this request.
Platform: | Size: 822 | Author: lsd | Hits:

[matlab用“时域最小平方误差准则” 设计IIR DF

Description: 试用时域最小平方误差准则(最小平方逆设计)设计一个具有四项系数的IIR DF的系统函数,使其在y(n)=[3,2,1]输入激励下,输出v(n)逼近d(n)=[2,0.2,0.05]。令v(-1)=v(-2)=0。求出v(n)的前8个样值与d(n)进行比较。用matlab实现了此要求。-trial at the least square error domain guidelines (minimum inverse square design) design with a four DF IIR coefficient of the system function, so in y (n) = [3,2,1] incentive to import, export v (n) approximation d (n) = [2,0.2,0.05]. So v (1) = v (2) = 0. Get v (n) of eight samples value d (n) comparisons. Using Matlab realization of this request.
Platform: | Size: 1024 | Author: lsd | Hits:

[Special Effectsadsp2

Description: 设计最小二乘逆滤波器求解反卷积问题,假设有观测噪声,为降低观测噪声的影响,可采用预白化方法,设计长度N=50的最小平方FIR逆滤波器-inverse filter design for least squares deconvolution, the assumption that the measurement noise, To reduce the impact of noise and possible pre-whitening method, the length N = 50 the minimum inverse square FIR filter
Platform: | Size: 26624 | Author: 吴森泉 | Hits:

[Special EffectsFourteen

Description: 第十四章 图像复原 14.1 退化模型 14.1.1 连续退化模型 14.1.2 离散退化模型 14.2 复原的代数方法 14.2.1 代数复原原理 14.2.2 逆滤波复原 14.2.3 最小二乘方滤波 14.3 MATLAB 实现图像复原 14.3.1 维纳滤波复原 14.3.2 规则化滤波复原 14.3.3 Lucy-Richardson 复原 14.3.4 盲去卷积复原 14.3.5 图像复原的其它 MATLAB 函数 -Chapter XIV 14.1 Image Restoration 14.1.1 degradation model for the degradation of model 14.1.2 discrete degradation model 14.2 recovery recovery algebra algebraic method 14.2.1 Principle 14.2.2 inverse filtering to recover 14.2.3 Least Square Filtering 14.3 MATLAB Image 14.3.1 Wiener Filtering recovery recovery recovery 14.3.2 filtering rules of 14.3.3 Lucy-Richardson deconvolution to recover 14.3.4 Blind Image Restoration to recover 14.3.5 other MATLAB function
Platform: | Size: 2048 | Author: 王万国 | Hits:

[Otherjiyu2weizueixiaoerchengfadtu

Description: 为了更有效地提取图像的局部特征,提出了一种基于2维偏最小二乘法(two—dimensional partial least square,2DPLS)的图像局部特征提取方法,并将其应用于面部表情识别中。该方法首先利用局部二元模式(1ocal binary pattern,LBP)算子提取一幅图像中所有子块的纹理特征,并将其组合成局部纹理特征矩阵。由于样本图像 被转化为局部纹理特征矩阵,因此可将传统PLS方法推广为2DPLS方法,用来提取其中的判别信息。2DPLS方法 通过对类成员关系矩阵的构造进行相应的修改,使其适应样本的矩阵形式,并能体现出人脸局部信息重要性的差 异。同时,对于类成员关系协方差矩阵的奇异性问题,也推导出了其广义逆的解析解。基于JAFFE人脸表情库的 实验结果表明,该方法不但可以有效地提取图像局部特征,并能取得良好的表情识别效果。-To better the image of the local feature extraction, a partial least squares method based on 2D (two-dimensional partial least square, 2DPLS) image local feature extraction method, and applied to facial expression recognition. In this method, use of local binary pattern (1ocal binary pattern, LBP) operator extracts an image texture features of all sub-blocks, and their combination into the local texture feature matrix. As the sample image Be translated into the local texture feature matrix, so the traditional PLS method can be generalized to 2DPLS method used to extract the identification information. 2DPLS method Through the class membership matrix in the corresponding modifications to adapt the sample matrix, and can reflect the importance of face poor local information Different. Meanwhile, members of the class covariance matrix of the singular relations issues, also derived the generalized inverse of the analytical solution. Based on the JAFFE facial expression database
Platform: | Size: 315392 | Author: MJ | Hits:

[Technology ManagementRLSxiebojiance

Description: 以自适应线性组合器为时变谐波检测器的模型, 根据逆归最小乘自适应滤波算法较好的跟踪性能, 使之应用于时变谐波的跟踪检测。仿真表明该方法比以往的基于最小均方 自适应滤波算法的谐波幅值和相位参数的测定具有更好的跟踪效果。-Adaptive linear combiner with harmonic detector is too variable model, according to inverse normalized least square adaptive filter algorithm has better tracking performance, make application to track time-varying harmonic detection. Simulation shows that this method than LMS-based adaptive filtering algorithm for the harmonic amplitude and phase parameters of the determination with improved tracking.
Platform: | Size: 208896 | Author: 韩一广 | Hits:

[Special Effectszuoye

Description: 用逆滤波、维纳滤波、最小二乘方滤波方法进行图像修复的比较。-By inverse filtering, Wiener filtering, least square filtering method for image restoration comparison.
Platform: | Size: 1024 | Author: 听雨 | Hits:

[Windows Developiadssp22n

Description: 设计最小二乘逆滤波器求解反卷积问题,假设有观测噪声,为降低观测噪声声的影响,可使用预白化方法,设计长度N=50的最小平方FIR逆滤波器 -The design of least squares inverse filter for solving the problem of deconvolution, assuming that the observation noise, in order to reduce the impact of the observation noise sound, you can use the pre-bleaching method, the design length of N = 50 the minimum square FIR inverse filter
Platform: | Size: 24576 | Author: duishou | Hits:

[Windows Developcpp-inverse-kinematics-library

Description: 用于六自由度机器人正逆运动学求解的算法程序,源码书写规范。对于逆运动学求解算法,采用了矩阵伪逆、最小二乘和lma三种方法实现。-Kinematics Algorithm for a six-axis robot written with C++. The algorithm is implemented with three methods: posedu inverse of matrix, least square and lma
Platform: | Size: 91136 | Author: 刘传凯 | Hits:

[Software Engineeringwzrh

Description: (1)针对在线计算量大这一缺陷,将预测控制中的柔化输出信号的思想推广到柔化输入信号,使得约束条件被简化为仅对当前控制量的约束,可以直接计算得出;同时该方法避免了求逆矩阵,大大减小了计算量,并能够保证控制算法的可行性和良好的控制性能。 (2)针对传统算法中设计参数整定困难这一缺点,应用基于BP神经网络变参数设计的广义预测控制算法,实现了对控制量柔化参数的在线调整。 (3)利用带有遗忘因子的最小二乘法对系统辨识。本文通过仿真发现该方法对于Hénon混沌系统并不完全适用,可考虑利用其他优化系统辨识的方法对本方法进行改进,以期达到更好的辨识效果。 (4)针对系统稳定性分析复杂,本文在控制增量前加入前馈因子,保证所选的Lyapunov函数使闭环系统满足Lyapunov稳定判据,由此证明闭环系统稳定。 -1. To solve the problem of GPC huge computation, algorithm with input increment constraints is presented in which the concept of output softness was used to soften the input increments.As a result, the constraints are simplified to be the only one constraint on the current control increment which can be computed directly. At the same time, it needn’t computing the inverse matrix and thus reduces large computation. Moreover, it guarantees the feasibility of the algorithm and has good control performance. 2. To overcome the difficulty in the choice of tuning parameters in traditional GPC, a GPC algorithm with variable parameter design based on BP neural network. is presented,in which the input softness parameters are tuned on line. 3. In this paper, we Identify system by using the least square method with forgetting factor. However, after system simulation, we realize that this method doesn’t fit the Hénon chaotic system perfectly. So we recommend modify this method by other Optimizati
Platform: | Size: 2048 | Author: 王冀龙 | Hits:

[Process-Threadehf

Description: 利用广义逆求解无约束条件下的优化问题。求解线性方程组最小二乘解的广义逆法-Under the condition of using the generalized inverse solving unconstrained optimization problems.The least-square solutions to the linear system of equations of the generalized inverse method
Platform: | Size: 2048 | Author: caoxiaoyue | Hits:

[Data structsnoiqe

Description: 设计最小二乘逆滤波器求解反卷积问题,假设有观测噪声,为降低观测噪声的影响-Design least-square deconvolution problem solving inverse filter, assume that the observation noise, in order to reduce the effects of observation noise
Platform: | Size: 24576 | Author: jww-3901 | Hits:

[matlabuhat

Description: 设计最小二乘逆滤波器求解反卷积问题,假设有观测噪声,为降低观测噪声的影响-Design least-square deconvolution problem solving inverse filter, assume that the observation noise, in order to reduce the effects of observation noise
Platform: | Size: 24576 | Author: Clkuencw | Hits:

[Windows Develop215063

Description: Design least-square deconvolution problem solving inverse filter, assume that the observation noise, in order to reduce the effects of observation noise
Platform: | Size: 24576 | Author: xathy | Hits:

[2D Graphiczcvpp12

Description: 设计最小二乘逆滤波器求解反卷积问题,假设有观测噪声,为降低观测噪声的影响-Design least-square deconvolution problem solving inverse filter, assume that the observation noise, in order to reduce the effects of observation noise
Platform: | Size: 26624 | Author: AG&662 | Hits:

[mathematicaasxzee

Description: 设计最小二乘逆滤波器求解反卷积问题,假设有观测噪声,为降低观测噪声的影响-Design least-square deconvolution problem solving inverse filter, assume that the observation noise, in order to reduce the effects of observation noise
Platform: | Size: 26624 | Author: insuantiafjzn | Hits:

[OpenCV325224

Description: 设计最小二乘逆滤波器求解反卷积问题,假设有观测噪声,为降低观测噪声的影响(Design least-square deconvolution problem solving inverse filter, assume that the observation noise, in order to reduce the effects of observation noise)
Platform: | Size: 23552 | Author: cuoly | Hits:

[Communication-Mobilematlab代码

Description: LM 算法最小二乘法的概念,最小二乘法要关心的是对应的cost function是线性还是非线性函数,不同的方法计算效率如何,要不要求逆,矩阵的维数。(The concept of the least square method of the lm algorithm, the least square method should be concerned whether the corresponding cost function is a linear or nonlinear function, the different methods calculate the efficiency, or the inverse, the dimension of the matrix.)
Platform: | Size: 49152 | Author: 华南虎2 | Hits:

[AlgorithmParameter estimation and inverse problems

Description: 参数估计和反问题的重要性就不多说了,我们经常用到最小二乘就是其中之一。(The importance of parameter estimation and inverse problem is not much said. We often use least square is one of them.)
Platform: | Size: 1702912 | Author: pistils | Hits:

[Otherestimation

Description: 用的是estimation加权最小二乘法状态估计法, 主要思想: 1、建立一个生成zdatas.m的函数,函数中先调用潮流计算; 2、电压幅值结果在潮流结果的bus变量中;节点注入功率量测取PQ节点负荷值的相反数;传输功量测取branch中的传输功率值。 3、对上一步提到的量测值随机添加白噪声; 4、视算例所要分析的问题,确实是否设置坏数据,若是,则设置; 5、将添加白噪声和坏数据后的量测输出到zdatas.m文件中。(The main idea is to use the estimation weighted least square method state estimation method. 1. A function to generate zdatas.m is set up, and the power flow calculation is first called in the function. 2, the voltage amplitude results in the bus variable of the power flow result. The power number of the node is injected to measure the inverse number of the PQ node load value, and the transmission power is used to measure the transmission power value in branch. 3, white noise is randomly added to the measured values mentioned in the last step. 4. The problem to be analyzed by the visual example is whether or not the bad data is set, if it is set; 5, the amount of white noise and bad data will be added to the zdatas.m file.)
Platform: | Size: 11264 | Author: deng_123 | Hits:
« 12 »

CodeBus www.codebus.net