Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - Legendre-Gauss
Search - Legendre-Gauss - List
Gauss-Legendre 采用五点 Gauss-Legendre 求积公式计算定积分,
Update : 2008-10-13 Size : 33.11kb Publisher : linnan

用gauss-legendre方法计算积分的近似值
Update : 2008-10-13 Size : 1.41kb Publisher : 东海公园

勒让德-高斯求积法求磁感应强度-Legendre- Gauss quadrature method for magnetic induction
Update : 2025-02-19 Size : 1kb Publisher : 俞伟

提供C++完成高斯坐标与大地坐标转换源码,请指教-provide complete Gauss coordinate geodetic coordinates with the source code conversion, please enlighten
Update : 2025-02-19 Size : 2kb Publisher : 曹磊

此程序包含求任意点高斯积分节点和对应的Gauss的求解系数(同时也编写了Lagrange插值公式)-for this procedure include arbitrary point Gaussian integral node and the corresponding Gauss coefficient of the solution (also prepared Lagrange interpolation formula)
Update : 2025-02-19 Size : 1kb Publisher : 张俊杰

Legendre正交多项式拟合,可对任意曲线进行拟合-Legendre polynomial fitting, right arbitrary curve fitting
Update : 2025-02-19 Size : 1kb Publisher : zwlin

DL : 0
利用高斯-勒让德多项式计算 sin(x+y)在矩形区域的积分-use Gauss- Legendre polynomials calculated sin (x y) in the rectangular region of Integral
Update : 2025-02-19 Size : 1kb Publisher : bug

数值分析 求积分算法源码,VC++,龙贝格求积算法,高斯-勒让德求积算法-Integral Algorithm for Numerical Analysis of source code, VC++, Romberg quadrature algorithm, Gauss- Legendre quadrature algorithm
Update : 2025-02-19 Size : 168kb Publisher : GYZ

Gauss-Legendre 采用五点 Gauss-Legendre 求积公式计算定积分,-Gauss-Legendre using five-point Gauss-Legendre quadrature formula for calculating the definite integral,
Update : 2025-02-19 Size : 33kb Publisher : linnan

高斯(Gauss)求积公式,介绍了高斯公式的详细的算法。
Update : 2025-02-19 Size : 119kb Publisher : dadda

用gauss-legendre方法计算积分的近似值-Gauss-legendre with integral approximation method
Update : 2025-02-19 Size : 1kb Publisher : 东海公园

DL : 0
基于legendre矩的尺度不变性matlab代码,压缩包解压时不能有密码。-Based on scale invariance legendre moments matlab code, when extracting compressed package should not have a password.
Update : 2025-02-19 Size : 150kb Publisher : Ry

This GUI can be used by entering nu at the MATLAB command prompt. The user can either select a function (f(x)) of their choice or a statistical distribution probability distribution function to plot over a user defined range. The function s integral can be evaluated over a user defined range by using: The composite trapezium, simpsons and gauss-legendre rules. This is useful for calculating accurate probabilities that one might see in statistical tables.
Update : 2025-02-19 Size : 12kb Publisher : 徐亮

DL : 0
to caluculate the legendre polynomials
Update : 2025-02-19 Size : 1kb Publisher : syam

6.5 计算一组积分的连分式法ffpqg.c 6.6 高振荡函数求积法fpart.c 6.7 勒让德-高斯求积法flrgs.c 6.8 拉盖尔-高斯求积法flgs.c 6.9 埃尔米特-高斯求积法fhmgs.c-6.5 calculate a set of integral continued fractions method ffpqg.c 6.6 high-vibration function, quadrature method fpart.c 6.7 Legendre- Gauss quadrature method flrgs.c 6.8 Laguerre- Gaussian Quadrature Method flgs.c 6.9 Hermite- Gaussian Quadrature Method fhmgs.c
Update : 2025-02-19 Size : 11kb Publisher : yangasdtat

DL : 0
复化的Gauss-legendre公式,自己写的,还有推导过程-Re-oriented Gauss-legendre formula, wrote it myself, as well as derivation
Update : 2025-02-19 Size : 38kb Publisher : zhaoxuan

os : window vista 32bit compiler : visual c++ 6.0 Gauss-Legendre Quadrature nPoint = 2,3,4,....,16
Update : 2025-02-19 Size : 241kb Publisher : Eunsoo Na

The numerical integration methods described so far are based on a rather simple choice of evaluation points for the function f(x). They are particularly suited for regularly tabulated data, such as one might measure in a laboratory, or obtain from computer software designed to produce tables. If one has the freedom to choose the points at which to evaluate f(x), a careful choice can lead to much more accuracy in evaluating the integral in question. We shall see that this method, called Gaussian or Gauss-Legendre integration, has one significant further advantage in many situations. In the evaluation of an integral on the interval to , it is
Update : 2025-02-19 Size : 134kb Publisher : Sid

DL : 0
legendre function solution in matlab
Update : 2025-02-19 Size : 2kb Publisher : ratika chandra

任意三角形上的任意阶Gauss积分程序 算法详见参考文献 H.T. Rathod, K.V. Nagaraja, B. Venkatesudu, N.L. Ramesh, Gauss Legendre quadrature over a triangle, J. Ind. Inst. Sci. 84 (2004) 183–188.-Gauss Legendre quadrature over any triangle
Update : 2025-02-19 Size : 2kb Publisher : pankejia
« 12 3 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.