CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - Legendre-Gauss
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - Legendre-Gauss - List
[
Other resource
]
Gauss-Legendre
DL : 0
Gauss-Legendre 采用五点 Gauss-Legendre 求积公式计算定积分,
Update
: 2008-10-13
Size
: 33.11kb
Publisher
:
linnan
[
Windows Develop
]
gauss-legendre
DL : 0
用gauss-legendre方法计算积分的近似值
Update
: 2008-10-13
Size
: 1.41kb
Publisher
:
东海公园
[
Mathimatics-Numerical algorithms
]
勒让德-高斯求积法求磁感应强度
DL : 0
勒让德-高斯求积法求磁感应强度-Legendre- Gauss quadrature method for magnetic induction
Update
: 2025-02-19
Size
: 1kb
Publisher
:
俞伟
[
Other
]
坐标转换
DL : 0
提供C++完成高斯坐标与大地坐标转换源码,请指教-provide complete Gauss coordinate geodetic coordinates with the source code conversion, please enlighten
Update
: 2025-02-19
Size
: 2kb
Publisher
:
曹磊
[
Other
]
legendre_gauss
DL : 0
此程序包含求任意点高斯积分节点和对应的Gauss的求解系数(同时也编写了Lagrange插值公式)-for this procedure include arbitrary point Gaussian integral node and the corresponding Gauss coefficient of the solution (also prepared Lagrange interpolation formula)
Update
: 2025-02-19
Size
: 1kb
Publisher
:
张俊杰
[
Algorithm
]
Legendre
DL : 0
Legendre正交多项式拟合,可对任意曲线进行拟合-Legendre polynomial fitting, right arbitrary curve fitting
Update
: 2025-02-19
Size
: 1kb
Publisher
:
zwlin
[
matlab
]
GaussSinxy
DL : 0
利用高斯-勒让德多项式计算 sin(x+y)在矩形区域的积分-use Gauss- Legendre polynomials calculated sin (x y) in the rectangular region of Integral
Update
: 2025-02-19
Size
: 1kb
Publisher
:
bug
[
Algorithm
]
Integral
DL : 0
数值分析 求积分算法源码,VC++,龙贝格求积算法,高斯-勒让德求积算法-Integral Algorithm for Numerical Analysis of source code, VC++, Romberg quadrature algorithm, Gauss- Legendre quadrature algorithm
Update
: 2025-02-19
Size
: 168kb
Publisher
:
GYZ
[
MiddleWare
]
Gauss-Legendre
DL : 0
Gauss-Legendre 采用五点 Gauss-Legendre 求积公式计算定积分,-Gauss-Legendre using five-point Gauss-Legendre quadrature formula for calculating the definite integral,
Update
: 2025-02-19
Size
: 33kb
Publisher
:
linnan
[
Algorithm
]
gaussjifen
DL : 0
高斯(Gauss)求积公式,介绍了高斯公式的详细的算法。
Update
: 2025-02-19
Size
: 119kb
Publisher
:
dadda
[
Windows Develop
]
gauss-legendre
DL : 0
用gauss-legendre方法计算积分的近似值-Gauss-legendre with integral approximation method
Update
: 2025-02-19
Size
: 1kb
Publisher
:
东海公园
[
matlab
]
Legendre
DL : 0
基于legendre矩的尺度不变性matlab代码,压缩包解压时不能有密码。-Based on scale invariance legendre moments matlab code, when extracting compressed package should not have a password.
Update
: 2025-02-19
Size
: 150kb
Publisher
:
Ry
[
Algorithm
]
integrate(nu)
DL : 0
This GUI can be used by entering nu at the MATLAB command prompt. The user can either select a function (f(x)) of their choice or a statistical distribution probability distribution function to plot over a user defined range. The function s integral can be evaluated over a user defined range by using: The composite trapezium, simpsons and gauss-legendre rules. This is useful for calculating accurate probabilities that one might see in statistical tables.
Update
: 2025-02-19
Size
: 12kb
Publisher
:
徐亮
[
matlab
]
MATLAB
DL : 0
to caluculate the legendre polynomials
Update
: 2025-02-19
Size
: 1kb
Publisher
:
syam
[
Windows Develop
]
CH6
DL : 0
6.5 计算一组积分的连分式法ffpqg.c 6.6 高振荡函数求积法fpart.c 6.7 勒让德-高斯求积法flrgs.c 6.8 拉盖尔-高斯求积法flgs.c 6.9 埃尔米特-高斯求积法fhmgs.c-6.5 calculate a set of integral continued fractions method ffpqg.c 6.6 high-vibration function, quadrature method fpart.c 6.7 Legendre- Gauss quadrature method flrgs.c 6.8 Laguerre- Gaussian Quadrature Method flgs.c 6.9 Hermite- Gaussian Quadrature Method fhmgs.c
Update
: 2025-02-19
Size
: 11kb
Publisher
:
yangasdtat
[
matlab
]
Gauss
DL : 0
复化的Gauss-legendre公式,自己写的,还有推导过程-Re-oriented Gauss-legendre formula, wrote it myself, as well as derivation
Update
: 2025-02-19
Size
: 38kb
Publisher
:
zhaoxuan
[
Mathimatics-Numerical algorithms
]
Gauss_Legendre_Quadrature
DL : 0
os : window vista 32bit compiler : visual c++ 6.0 Gauss-Legendre Quadrature nPoint = 2,3,4,....,16
Update
: 2025-02-19
Size
: 241kb
Publisher
:
Eunsoo Na
[
Software Engineering
]
Gaussian
DL : 0
The numerical integration methods described so far are based on a rather simple choice of evaluation points for the function f(x). They are particularly suited for regularly tabulated data, such as one might measure in a laboratory, or obtain from computer software designed to produce tables. If one has the freedom to choose the points at which to evaluate f(x), a careful choice can lead to much more accuracy in evaluating the integral in question. We shall see that this method, called Gaussian or Gauss-Legendre integration, has one significant further advantage in many situations. In the evaluation of an integral on the interval to , it is
Update
: 2025-02-19
Size
: 134kb
Publisher
:
Sid
[
matlab
]
legendreP
DL : 0
legendre function solution in matlab
Update
: 2025-02-19
Size
: 2kb
Publisher
:
ratika chandra
[
matlab
]
Gauss-Legendre-quadrature
DL : 0
任意三角形上的任意阶Gauss积分程序 算法详见参考文献 H.T. Rathod, K.V. Nagaraja, B. Venkatesudu, N.L. Ramesh, Gauss Legendre quadrature over a triangle, J. Ind. Inst. Sci. 84 (2004) 183–188.-Gauss Legendre quadrature over any triangle
Update
: 2025-02-19
Size
: 2kb
Publisher
:
pankejia
«
1
2
3
»
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.