Welcome![Sign In][Sign Up]
Location:
Search - MATLAB mcmc model selection

Search list

[AI-NN-PRReversibleJumpMCMCSimulatedAnneaing

Description: This demo nstrates the use of the reversible jump MCMC simulated annealing for neural networks. This algorithm enables us to maximise the joint posterior distribution of the network parameters and the number of basis function. It performs a global search in the joint space of the parameters and number of parameters, thereby surmounting the problem of local minima. It allows the user to choose among various model selection criteria, including AIC, BIC and MDL
Platform: | Size: 958464 | Author: 大辉 | Hits:

[AI-NN-PRparticle-filter-mcmc

Description: 该程序为基于粒子滤波的一种新算法,综合MCMC Bayesian Model Selection即MONTE CARLO马尔克夫链的算法,用来实现目标跟踪,多目标跟踪,及视频目标跟踪及定位等,解决非线性问题的能力比卡尔曼滤波,EKF,UKF好多了,是我珍藏的好东西,现拿出来与大家共享,舍不得孩子套不着狼,希望大家相互支持,共同促进.-the program based on particle filter for a new algorithm, Integrated Bayesian MCMC Model Selection MONTE CARLO that Ma Erkefu chain algorithm, which can be used for target tracking, multi-target tracking, and video tracking and positioning. solve nonlinear problems of capacity than Kalman filtering, EKF, UKF much better, and I treasure the good stuff, now up with the share could not bear children, she sets the wolf, we hope that support each other and work together to promote.
Platform: | Size: 14336 | Author: zhang | Hits:

[AI-NN-PRrjMCMCsa

Description: On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters. -On-Line MCMC Bayesian Model Selection This demo demonstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar-xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
Platform: | Size: 16384 | Author: 徐剑 | Hits:

[AlgorithmOn-Line_MCMC_Bayesian_Model_Selection

Description: This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.-This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar-xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
Platform: | Size: 220160 | Author: 晨间 | Hits:

[matlabnouv2

Description: the program based on particle filter for a new algorithm, Integrated Bayesian MCMC Model Selection MONTE CARLO that Ma Erkefu chain algorithm, which can be used for target tracking, multi-target tracking, and video tracking and positioning-the program based on particle filter for a new algorithm, Integrated Bayesian MCMC Model Selection MONTE CARLO that Ma Erkefu chain algorithm, which can be used for target tracking, multi-target tracking, and video tracking and positioning
Platform: | Size: 2048 | Author: FOUFOU2 | Hits:

[matlabrjMCMC

Description: Nando de Freitas' sequential Monte Carlo demos in Matlab. Reversible Jump MCMC Bayesian Model Selection.
Platform: | Size: 20480 | Author: Comaero | Hits:

CodeBus www.codebus.net