Location:
Search - MEA
Search list
Description: 该软件能完成机械设计计算部分,包括齿轮传动,蜗轮蜗杆传动,链传动,带传动,滑动轴承,滚动轴承,机械连接等。语言VC++。 -The software can complete mechanical design, including Gear, the worm-drive, chain drive, belt, sliding bearings, bearings, mechanical connections. VC language.
Platform: |
Size: 287461 |
Author: 了不起 |
Hits:
Description: 很实用的程序,也很容易懂,你们可以-very practical procedures, and very easy to understand, you can look at
Platform: |
Size: 14161 |
Author: 刘剑辉 |
Hits:
Description: 多目标进化算法及其在电力系统中的应用研究,是一篇优秀的博士论文
Platform: |
Size: 3079506 |
Author: chenjy |
Hits:
Description: matlab实现的瑞利衰落信道仿真程序,实现方法是MEA方法
Platform: |
Size: 1959 |
Author: mongo |
Hits:
Description: 该软件能完成机械设计计算部分,包括齿轮传动,蜗轮蜗杆传动,链传动,带传动,滑动轴承,滚动轴承,机械连接等。语言VC++。 -The software can complete mechanical design, including Gear, the worm-drive, chain drive, belt, sliding bearings, bearings, mechanical connections. VC language.
Platform: |
Size: 286720 |
Author: 了不起 |
Hits:
Description: matlab的实例,是关于模糊c均值的一个小程序-Matlab example of the fuzzy c-means a small program
Platform: |
Size: 1024 |
Author: fangyang |
Hits:
Description: 2个举类的简单k-means算法,非常简单,新手给大家提供参考了-two categories give a simple k-means algorithm is very simple, and newcomers to provide a reference to the
Platform: |
Size: 3072 |
Author: 姜珏 |
Hits:
Description: 很实用的程序,也很容易懂,你们可以-very practical procedures, and very easy to understand, you can look at
Platform: |
Size: 14336 |
Author: 刘剑辉 |
Hits:
Description: 多目标进化算法及其在电力系统中的应用研究,是一篇优秀的博士论文-Multi-objective evolutionary algorithm and its application in power system research, is an outstanding doctoral dissertation
Platform: |
Size: 3079168 |
Author: chenjy |
Hits:
Description: matlab实现的瑞利衰落信道仿真程序,实现方法是MEA方法-matlab realize the Rayleigh fading channel simulation program, is to realize MEA method
Platform: |
Size: 2048 |
Author: mongo |
Hits:
Description: 用k-means 做彩色图像分割,分类数可选-Using k-means to do color image segmentation, classification number of optional
Platform: |
Size: 1024 |
Author: 卢学 |
Hits:
Description: k-means(欧氏距离)聚类算法是最基本的聚类算法,是理解和应用聚类算法的基础,通过k-means(欧氏距离)聚类算法我们才可以初步了解数据挖掘的原理。-k-means (Euclidean distance) clustering algorithm is the most basic clustering algorithm, is understanding and the basis for the application of clustering algorithm, through the k-means (Euclidean distance) clustering algorithm we are able to a preliminary understanding of the principles of data mining .
Platform: |
Size: 276480 |
Author: 徐加子 |
Hits:
Description: 用MATLAB编写的层次-K-MEANS算法,简单实用,希望对您有帮助-Written using MATLAB level-K-MEANS algorithm is simple, practical, hope you find this helpful
Platform: |
Size: 5120 |
Author: jie |
Hits:
Description: 基于MEA算法的RS(255,223)码的译码软件实现-MEA algorithm based on RS (255,223) code decoding software
Platform: |
Size: 531456 |
Author: ou |
Hits:
Description: C#实现k均值文本聚类算法,文本聚类C#源程序,k-means聚类算法-C# to achieve k means clustering algorithm, document clustering C# source code, k-means clustering algorithm
Platform: |
Size: 37888 |
Author: 康卫 |
Hits:
Description: LabVIEW 实现的均值滤波器 课程设计-LabVIEW to achieve the mean filter
Platform: |
Size: 8192 |
Author: 鲍文磊 |
Hits:
Description: 网络测试教程,中英文对照,里面大概描述了网络测试的主要步骤和方法。-Network Test tutorial, a bilingual, which probably describes the main steps of the network and methods of testing.
Platform: |
Size: 3352576 |
Author: liuli |
Hits:
Description: MIMO无线信道建模及性能评估
:基于开阔地随机模型假设,分析了多天线无通信系统的典型统计模型和物理模型两种信道建模技术,推导
出基于空间衰落相关性的克罗内克积模型和基于路径的统计簇模型,并通过仿真比较了两种模型的性能。结合多
天线信道矩阵的特征分析方法,设计利用多天线系统并行子信道的MEA—SVD算法来获得高的阵列增益。该算法
包括跟踪和训练两种工作模式。考虑克罗内克积信道模型时,我们对接收机采用MEA—SVD算法时系统性能进行
仿真评估,并指出了在实际应用中存在的局限性。-Modeling and Performance Evaluation of the MIMO Radio Channel
Platform: |
Size: 284672 |
Author: li |
Hits:
Description: Hadoop编程环境下编写的Kmeans程序。程序输入需要的源材料已经找不到了,谨供参考。-Hadoop Kmeans programming environment written procedures. Enter the required procedures have not found the source material, for information.
Platform: |
Size: 22528 |
Author: 雷见 |
Hits:
Description: 提出了一种基于广义随即petri网的自动制造系统的性能评估实用模型并用来仿真-Generalized stochastic Petri net (GSPN) modules are used
as basic building blocks to model and analyze complex manufacturing
ystems. This modular approach facilitates an easy model construction
and helps manage the complexity
of modeling large manufacturing
ystems. The structural analysis ensures that the model is live and
bounded, which guarantees that the equivalent Markov chain (MC) will
be ergodic. The temporal analysis is used to derive performance mea-
ures such as average production rates and average in-process invento-
ies. The main advantage
of Petri nets (PN!ˉs) overMC!ˉs is that the
number
of places and transitions only increases slightly as the manufac-
uring system complexity increases, whereas the number of states
in the
Platform: |
Size: 1716224 |
Author: pengbin |
Hits: