Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - Nonlinear Dimensionality Reduction
Search - Nonlinear Dimensionality Reduction - List
Description: S-ISOMAP is a manifold learning algorithm, which is a supervised variant of ISOMAP. Reference: X. Geng, D.-C. Zhan, and Z.-H. Zhou. Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 2005, vol.35, no.6, pp.1098-1107.
Date : 2008-10-13 Size : 30.87kb User : 修宇

LLE 一种非线性维数约减算法,非常好用-LLE a nonlinear dimensionality reduction algorithm, a very handy
Date : 2008-10-13 Size : 2.73kb User : redapple

DL : 0
Description: S-ISOMAP is a manifold learning algorithm, which is a supervised variant of ISOMAP. Reference: X. Geng, D.-C. Zhan, and Z.-H. Zhou. Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 2005, vol.35, no.6, pp.1098-1107.-Description: S-ISOMAP is a manifold learning algorithm, which is a supervised variant of ISOMAP. Reference: X. Geng, D.-C. Zhan, and Z.-H. Zhou. Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Transactions on Systems, Man, and Cybernetics- Part B: Cybernetics, 2005, vol.35, no.6, pp.1098-1107.
Date : 2025-07-06 Size : 31kb User : 修宇

LLE 一种非线性维数约减算法,非常好用-LLE a nonlinear dimensionality reduction algorithm, a very handy
Date : 2025-07-06 Size : 2kb User : redapple

此程序为非线性降维典型算法之一--LLE算法,对想进行高维数据降维研究的朋友们值得一看-This procedure for nonlinear dimensionality reduction algorithm, one of the typical- LLE algorithm, to want to high-dimensional data dimensionality reduction study to see friends
Date : 2025-07-06 Size : 9kb User : ttt

这是LLE的原始算法,原文的参考文献是:S.T.Roweis and L.K.Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2000.-This is the original LLE algorithm, the original reference is: STRoweis and LKSaul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2000.
Date : 2025-07-06 Size : 1kb User : treat

基于局部线性嵌入_LLE_非线性降维的多流形学习,是当前人脸识别的新方向-Face Recognition Based on Locally Linear Embedding for Nonlinear Dimensionality Reduction _LLE_ multi-manifold learning
Date : 2025-07-06 Size : 965kb User : 孙浩量

DL : 0
非线性降维方法 可以应用于高维数据的机器学习-Nonlinear dimensionality reduction methods can be applied to high-dimensional data, machine learning
Date : 2025-07-06 Size : 1kb User : 王博

DL : 0
非线性降维方法 可以应用于高维数据的机器学习-Nonlinear dimensionality reduction methods can be applied to high-dimensional data, machine learning
Date : 2025-07-06 Size : 1kb User : 王博

DL : 0
非线性降维方法llc 可以应用于高维数据的机器学习-Llc nonlinear dimensionality reduction methods can be applied to high-dimensional data, machine learning
Date : 2025-07-06 Size : 2kb User : 王博

DL : 0
非线性降维方法lle 可以应用于高维数据的机器学习-Lle nonlinear dimensionality reduction methods can be applied to high-dimensional data, machine learning
Date : 2025-07-06 Size : 2kb User : 王博

非线性降维方法KPCA 可以应用于高维数据的机器学习-KPCA nonlinear dimensionality reduction methods can be applied to high-dimensional data, machine learning
Date : 2025-07-06 Size : 1kb User : 王博

DL : 0
关于高维数据降维的非线性方法LLE代码,对学习数据降维有帮助-High dimensional data on the nonlinear dimensionality reduction methods LLE code, data dimensionality reduction in learning help
Date : 2025-07-06 Size : 3kb User : hyj_math

DL : 0
一种流形学习算法,用于非线性降维,文章发表在2000年science杂志上,是一种非常经典的算法。-A manifold learning algorithm for nonlinear dimensionality reduction, articles published in science journal in 2000, is a very classic algorithms.
Date : 2025-07-06 Size : 2kb User : 仲国强

This toolbox is an educational and recreative toolbox around recent ideas in the field of dimension reduction. * PCA : classical Principal Componnent Analysis (linear projection). * Nonlinear dimensionality reduction by locally linear embedding. * Laplacian Eigenmaps for dimensionality reduction and data representation-This toolbox is an educational and recreative toolbox around recent ideas in the field of dimension reduction. * PCA : classical Principal Componnent Analysis (linear projection). * Nonlinear dimensionality reduction by locally linear embedding. * Laplacian Eigenmaps for dimensionality reduction and data representation
Date : 2025-07-06 Size : 221kb User : tra ba huy

Nonlinear Dimensionality Reduction for Face Recognition.pdf
Date : 2025-07-06 Size : 383kb User : seven

一篇2000年流行的降维文章。学习降维必看。-Nonlinear Dimensionality Reduction by Locally Linear Embedding
Date : 2025-07-06 Size : 653kb User : shi

Laplacian Eigenmaps [10] uses spectral techniques to perform dimensionality reduction. This technique relies on the basic assumption that the data lies in a low dimensional manifold in a high dimensional space.[11] This algorithm cannot embed out of sample points, but techniques based on Reproducing kernel Hilbert space regularization exist for adding this capability.[12] Such techniques can be applied to other nonlinear dimensionality reduction algorithms as well.
Date : 2025-07-06 Size : 2kb User : Karthikeyan

一类非线性EV模型的降维估计Nonlinear dimensionality reduction model is estimated EV-Nonlinear dimensionality reduction model is estimated EV
Date : 2025-07-06 Size : 326kb User : ku

介绍一种非线性降维方法的文章,是篇算法介绍-A Global Geometric Framework for Nonlinear Dimensionality Reduction
Date : 2025-07-06 Size : 596kb User : pei
« 12 3 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.