Location:
Search - OneR java
Search list
Description: < 数据挖掘--实用机器学习技术及java实现> 一书结合数据挖掘和机器学习的知识,作者陈述了自动挖掘模式的基础理论,并且以java语言实现了具有代表性的各类数据挖掘方法.例如:classifier中的ZeroR.OneR.NaiveBayes.DecisionTable.IBK.C45,还有聚类,数据预处理等.
Platform: |
Size: 3976921 |
Author: 龚璇 |
Hits:
Description: :<<数据挖掘--实用机器学习技术及java实现>>一书的配套源程序,结合数据挖掘和机器学习的知识,以java语言实现了具有代表性的各类数据挖掘方法.例如:classifier中的ZeroR.OneR.NaiveBayes.DecisionTable.IBK.C45,还有聚类,数据预处理等-: lt; Lt; Data Mining -- Practical Machine Learning Technology and java achieve gt; Gt; A matching the source, combining data mining and machine learning, the knowledge, java language to a representative of the various types of data mining. For example : the classifier ZeroR . OneR.NaiveBayes.DecisionTable.IBK.C45, clustering, data pretreatment
Platform: |
Size: 1104468 |
Author: 黄 |
Hits:
Description: :<<数据挖掘--实用机器学习技术及java实现>>一书的配套源程序,结合数据挖掘和机器学习的知识,以java语言实现了具有代表性的各类数据挖掘方法.例如:classifier中的ZeroR.OneR.NaiveBayes.DecisionTable.IBK.C45,还有聚类,数据预处理等-: lt; Lt; Data Mining-- Practical Machine Learning Technology and java achieve gt; Gt; A matching the source, combining data mining and machine learning, the knowledge, java language to a representative of the various types of data mining. For example : the classifier ZeroR . OneR.NaiveBayes.DecisionTable.IBK.C45, clustering, data pretreatment
Platform: |
Size: 1103872 |
Author: 黄 |
Hits:
Description: < 数据挖掘--实用机器学习技术及java实现> 一书结合数据挖掘和机器学习的知识,作者陈述了自动挖掘模式的基础理论,并且以java语言实现了具有代表性的各类数据挖掘方法.例如:classifier中的ZeroR.OneR.NaiveBayes.DecisionTable.IBK.C45,还有聚类,数据预处理等.-<Data mining- practical machine learning technology and java to achieve> a book combining data mining and machine learning knowledge, the authors presented an automatic mining mode of basic theory, and in order to achieve the java language with the representation of various data mining methods. For example: classifier in ZeroR.OneR.NaiveBayes.DecisionTable.IBK.C45, there is clustering, data preprocessing, such as.
Platform: |
Size: 3976192 |
Author: 龚璇 |
Hits:
Description: WEAK 开发环境简介,介绍了WEKAWeka 试验(Experiment)环境可以让用户创建,运行,修改和分析算法试验,这会比单独的处理
各个算法更加方便。例如,用户可创建一次试验,在一系列数据集上运行多个算法(schemes),然后
2
分析结果以判断是否某个算法比其他算法(在统计意义下)更好。
可以通过Simple CLI 在命令行的方式下运行试验环境。例如,在CLI 上键入以下命令,将通过一
个基本的训练和测试步骤在Iris 数据集上运行OneR 算法。(注意该命令应放在同一行中输入CLI。)-WEAK development environment profile, introduced WEKAWeka test (Experiment) environment can allow users to create, run, modify and analysis algorithms test, which will deal with the various algorithms than the individual more convenient. For example, users can create an experiment in a series of data sets to run multiple algorithms (schemes), and then two results of the analysis to determine whether a particular algorithm than other algorithms (in the statistical sense) better. Simple CLI through the command line way to run test environments. For example, in the CLI, type the following command through a basic training and testing steps in the Iris data set to run on OneR algorithm. (Note that the order should be placed on the same line, enter CLI.)
Platform: |
Size: 1289216 |
Author: 王春丽 |
Hits: