Welcome![Sign In][Sign Up]
Location:
Search - P MOD

Search list

[Other resourceGassianXY

Description: 利用二元域的高斯消元法得到输入矩阵H对应的生成矩阵G,同时返回与G满足mod(G*P ,2)=0的矩阵P,其中P 表示P的转置 使用方法:[P,G]=Gaussian(H,x),x=1 or 2,1表示G的左边为单位阵-binary domain PGE law input matrix corresponding to the formation of H matrix G, Meanwhile the return of mod meet with the G (G * P, 2) = 0 matrix P, which said P P switch home use : [P, G] = Gaussian (H, x), x = 1 or 2,1 G said the left side of the RUF unit
Platform: | Size: 1519 | Author: 心海 | Hits:

[Windows DevelopImgRotate

Description: Dim DP() As Byte, c As Long, d As Long Dim i As Long, j As Long Dim Color As Long, SRad As Double, CRad As Double Dim p As Double, q As Double, m As Double, n As Double Dim m1 As Double, n1 As Double, m2 As Double, n2 As Double, t As RGB, t1 As RGB, t2 As RGB, t3 As RGB, t4 As Long Color = BackColor \\ 65536 \\ 8 + ((BackColor \\ 256 Mod 256) \\ 4) * 32 + ((BackColor Mod 256) \\ 8) * 2048
Platform: | Size: 108822 | Author: zhou | Hits:

[Other resourceercitongyufangchengdeqiujie

Description: 求解 形如 a*x^2+b*x+c=0 (mod p)的二次同余方程,其中p为任意素数,a,b,c为任意整数.
Platform: | Size: 4590 | Author: superred | Hits:

[Crack HackDSA

Description: Digital Signature Algorithm (DSA)是Schnorr和ElGamal签名算法的变种,被美国NIST作为DSS(DigitalSignature Standard)。算法中应用了下述参数: p:L bits长的素数。L是64的倍数,范围是512到1024; q:p - 1的160bits的素因子; g:g = h^((p-1)/q) mod p,h满足h < p - 1, h^((p-1)/q) mod p > 1; x:x < q,x为私钥 ; y:y = g^x mod p ,( p, q, g, y )为公钥; H( x ):One-Way Hash函数。DSS中选用SHA( Secure Hash Algorithm )。 p, q, g可由一组用户共享,但在实际应用中,使用公共模数可能会带来一定的威胁。签名及验证协议如下: 1. P产生随机数k,k < q; 2. P计算 r = ( g^k mod p ) mod q s = ( k^(-1) (H(m) + xr)) mod q 签名结果是( m, r, s )。 3. 验证时计算 w = s^(-1)mod q u1 = ( H( m ) * w ) mod q u2 = ( r * w ) mod q v = (( g^u1 * y^u2 ) mod p ) mod q 若v = r,则认为签名有效。   DSA是基于整数有限域离散对数难题的,其安全性与RSA相比差不多。DSA的一个重要特点是两个素数公开,这样,当使用别人的p和q时,即使不知道私钥,你也能确认它们是否是随机产生的,还是作了手脚。RSA算法却作不到。
Platform: | Size: 136954 | Author: wildkaede | Hits:

[Other resourceElGamal

Description:  ElGamal算法既能用于数据加密也能用于数字签名,其安全性依赖于计算有限域上离散对数这一难题。 密钥对产生办法。首先选择一个素数p,两个随机数, g 和x,g, x < p, 计算 y = g^x ( mod p ),则其公钥为 y, g 和p。私钥是x。g和p可由一组用户共享。 ElGamal用于数字签名。被签信息为M,首先选择一个
Platform: | Size: 1214 | Author: 修凤志 | Hits:

[Other resource雅可比法

Description: 新手上路 用雅可比符号来计算勒让德符号的值 用于判断与素数p互素的正整数n是否是mod p 的二次剩余-Started Jacobian symbols used to calculate Legendre symbol for the value judgment and mutual-p-a positive integer n is whether the mod p Quadratic Residue
Platform: | Size: 825 | Author: 赵一辉 | Hits:

[Crack HackRSA解密和加密算法的实现和应用

Description: RSA算法 :首先, 找出三个数, p, q, r, 其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数...... p, q, r 这三个数便是 person_key,接著, 找出 m, 使得 r^m == 1 mod (p-1)(q-1)..... 这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了..... 再来, 计算 n = pq....... m, n 这两个数便是 public_key ,编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a < n.... 如果 a >= n 的话, 就将 a 表成 s 进位 (s <= n, 通常取 s = 2^t), 则每一位数均小于 n, 然後分段编码...... 接下来, 计算 b == a^m mod n, (0 <= b < n), b 就是编码后的资料。解码的过程是, 计算 c == b^r mod pq (0 <= c < pq), 于是, 解码完毕-RSA algorithm : First, find a few 3, p, q, r, p, q is the two different prime number, with the r (p-1) (q-1) coprime several ... p, q, r it person_key number is three, and then find m, making r ^ m == a mod (p-1) (q-1 m ...................................... this must exist, because r (p-1) (q - 1) coprime, with the division algorithm can be a ..... Next, calculate n = pq ....... m, n is the number two public_key, coding process is that if a data and to treat it as a big Integer assuming a <n. ... If a> = n, a table will be rounding into s (s <= n, usually from 2 ^ s = t), each n is less than the median, and then sub-coding ..... . Next, calculate a == b ^ m mod n, (0 <= b <n), b is encoded information. Decoding is the process of calculating c == b ^ r mod pq (0 <= c &
Platform: | Size: 1393 | Author: 胡康康 | Hits:

[Algorithm雅可比法

Description: 新手上路 用雅可比符号来计算勒让德符号的值 用于判断与素数p互素的正整数n是否是mod p 的二次剩余-Started Jacobian symbols used to calculate Legendre symbol for the value judgment and mutual-p-a positive integer n is whether the mod p Quadratic Residue
Platform: | Size: 1024 | Author: 赵一辉 | Hits:

[Crack HackRSA解密和加密算法的实现和应用

Description: RSA算法 :首先, 找出三个数, p, q, r, 其中 p, q 是两个相异的质数, r 是与 (p-1)(q-1) 互质的数...... p, q, r 这三个数便是 person_key,接著, 找出 m, 使得 r^m == 1 mod (p-1)(q-1)..... 这个 m 一定存在, 因为 r 与 (p-1)(q-1) 互质, 用辗转相除法就可以得到了..... 再来, 计算 n = pq....... m, n 这两个数便是 public_key ,编码过程是, 若资料为 a, 将其看成是一个大整数, 假设 a < n.... 如果 a >= n 的话, 就将 a 表成 s 进位 (s <= n, 通常取 s = 2^t), 则每一位数均小于 n, 然後分段编码...... 接下来, 计算 b == a^m mod n, (0 <= b < n), b 就是编码后的资料。解码的过程是, 计算 c == b^r mod pq (0 <= c < pq), 于是, 解码完毕-RSA algorithm : First, find a few 3, p, q, r, p, q is the two different prime number, with the r (p-1) (q-1) coprime several ... p, q, r it person_key number is three, and then find m, making r ^ m == a mod (p-1) (q-1 m ...................................... this must exist, because r (p-1) (q- 1) coprime, with the division algorithm can be a ..... Next, calculate n = pq ....... m, n is the number two public_key, coding process is that if a data and to treat it as a big Integer assuming a <n. ... If a> = n, a table will be rounding into s (s <= n, usually from 2 ^ s = t), each n is less than the median, and then sub-coding ..... . Next, calculate a == b ^ m mod n, (0 <= b <n), b is encoded information. Decoding is the process of calculating c == b ^ r mod pq (0 <= c &
Platform: | Size: 1024 | Author: 胡康康 | Hits:

[MiddleWareGassianXY

Description: 利用二元域的高斯消元法得到输入矩阵H对应的生成矩阵G,同时返回与G满足mod(G*P ,2)=0的矩阵P,其中P 表示P的转置 使用方法:[P,G]=Gaussian(H,x),x=1 or 2,1表示G的左边为单位阵-binary domain PGE law input matrix corresponding to the formation of H matrix G, Meanwhile the return of mod meet with the G (G* P, 2) = 0 matrix P, which said P P switch home use : [P, G] = Gaussian (H, x), x = 1 or 2,1 G said the left side of the RUF unit
Platform: | Size: 1024 | Author: 心海 | Hits:

[assembly languageRamtest

Description: FILE : lcd.s43 VERSION : 1.0 BEG DATE : 2002/10/22 MOD DATE : 2002/10/23 DESCRIPTION : 0.2S级三相电子式电能表 -FILE: lcd.s43 VERSION: 1.0 BEG DATE: 2002/10/22 MOD DATE: 2002/10/23 DESCRIPTION: 0.2S-class three-phase Electronic Energy Meter
Platform: | Size: 3072 | Author: | Hits:

[Windows DevelopImgRotate

Description: Dim DP() As Byte, c As Long, d As Long Dim i As Long, j As Long Dim Color As Long, SRad As Double, CRad As Double Dim p As Double, q As Double, m As Double, n As Double Dim m1 As Double, n1 As Double, m2 As Double, n2 As Double, t As RGB, t1 As RGB, t2 As RGB, t3 As RGB, t4 As Long Color = BackColor \ 65536 \ 8 + ((BackColor \ 256 Mod 256) \ 4) * 32 + ((BackColor Mod 256) \ 8) * 2048-Dim DP() As Byte, c As Long, d As Long Dim i As Long, j As Long Dim Color As Long, SRad As Double, CRad As Double Dim p As Double, q As Double, m As Double, n As Double Dim m1 As Double, n1 As Double, m2 As Double, n2 As Double, t As RGB, t1 As RGB, t2 As RGB, t3 As RGB, t4 As Long Color = BackColor \ 65536 \ 8+ ((BackColor \ 256 Mod 256) \ 4)* 32+ ((BackColor Mod 256) \ 8)* 2048
Platform: | Size: 108544 | Author: zhou | Hits:

[Crack HackDSA

Description: Digital Signature Algorithm (DSA)是Schnorr和ElGamal签名算法的变种,被美国NIST作为DSS(DigitalSignature Standard)。算法中应用了下述参数: p:L bits长的素数。L是64的倍数,范围是512到1024; q:p - 1的160bits的素因子; g:g = h^((p-1)/q) mod p,h满足h < p - 1, h^((p-1)/q) mod p > 1; x:x < q,x为私钥 ; y:y = g^x mod p ,( p, q, g, y )为公钥; H( x ):One-Way Hash函数。DSS中选用SHA( Secure Hash Algorithm )。 p, q, g可由一组用户共享,但在实际应用中,使用公共模数可能会带来一定的威胁。签名及验证协议如下: 1. P产生随机数k,k < q; 2. P计算 r = ( g^k mod p ) mod q s = ( k^(-1) (H(m) + xr)) mod q 签名结果是( m, r, s )。 3. 验证时计算 w = s^(-1)mod q u1 = ( H( m ) * w ) mod q u2 = ( r * w ) mod q v = (( g^u1 * y^u2 ) mod p ) mod q 若v = r,则认为签名有效。   DSA是基于整数有限域离散对数难题的,其安全性与RSA相比差不多。DSA的一个重要特点是两个素数公开,这样,当使用别人的p和q时,即使不知道私钥,你也能确认它们是否是随机产生的,还是作了手脚。RSA算法却作不到。
Platform: | Size: 136192 | Author: wildkaede | Hits:

[Othermomi

Description: 大数的模幂算法(GUI),用密码学课本中的算法,快速、高效。计算(x的r次方) mod p 的值-Large numbers of modular exponentiation algorithm (GUI), used cryptography algorithm textbooks, fast and efficient. Calculation of (x of the r-th power) mod p value
Platform: | Size: 22528 | Author: LYC | Hits:

[matlabMod

Description: 包含12个MATLAB函数,分别长生2PSK 4psk 8psk信号 和16QAM信号以及星座图 噪声程序等-12 MATLAB includes a function of longevity separately 2PSK 4psk 8psk signal and 16QAM signal constellation diagram, as well as procedures such as noise
Platform: | Size: 6144 | Author: yang long | Hits:

[GIS programp

Description: 基于马尔萨斯及Logistic人口模型,本文做了相应改进,根据已有数据确立了我们的人口模型。人口净增长率与人口密度比是简单常数值或者是简单的指数函数,所建立的模型来预测人口总数都是不完备的,所以我们假定人口净增长率是随总人口变化的函数,而这个函数是我们通过数据拟合可以近似得到的,由人口净增长率函数的确立,我们可以以微分方程的形式建立人口模型-Based on the Malthusian and Logistic population model, this article has done a corresponding improvement in the data has been established according to our population model. Net population growth rate and population density of more than a simple constant value, or a simple exponential function, the model to predict the total population are incomplete, so we assume that the net population growth rate is changing with the function of the total population, and this function is fitted, we can approximate the data obtained by the population net growth rate of established function, we are able to establish a population in the form of differential equation model
Platform: | Size: 197632 | Author: laiwei | Hits:

[Data structsRK

Description: 实验RK算法,即利用Hash方法和素数理论,首先定义一个Hash函数(hash (r) = r mod q),然后将模式串P和文本串T中长度为m的子串利用Hash函数转换成数值。显然只需比较那些与模式串具有相同Hash函数值的子串。 当然因为Hash冲突的存在,还要进一步进行字符串比较,但只要选择适当的素数q, Hash冲突的概率就会很小 -Experimental RK algorithm, namely the use of Hash methods and prime number theory, first of all define a Hash Function (hash (r) = r mod q), then the pattern string P and text string T of length m substring using Hash function to convert values . Clearly only those with the pattern string comparison Hash function values ??with the same substring. Of course, the existence of the conflict because of Hash, but also further string comparison, but as long as selecting the appropriate prime q, Hash is very small the probability of conflict
Platform: | Size: 218112 | Author: chenb | Hits:

[Algorithmpowmod

Description: An effecient algorithm to calculate the power mod (b^p)(mod n) using Dynamic Programming
Platform: | Size: 5120 | Author: NS_Noob | Hits:

[Other1-p^2-1mod-p

Description: 从1-p^2-1中找出与p互素的元素,计算1-p^2-1模p的值,并按模值分类。已验证p=5,7。-Find numbers 1-p^2-1 which is co-prime to p,compute values mod p, and classify them according to values mod p.
Platform: | Size: 1024 | Author: rovid | Hits:

[CSharpModOfPower

Description: Write an efficient algorithm to calculate R=B^P mod M
Platform: | Size: 163840 | Author: manga | Hits:
« 12 3 »

CodeBus www.codebus.net