Description: (1)应用9×9的窗口对上述图象进行随机抽样,共抽样200块子图象;
(2)将所有子图象按列相接变成一个81维的行向量;
(3)对所有200个行向量进行KL变换,求出其对应的协方差矩阵的特征向量和特征值,按降序排列特征值以及所对应的特征向量;
(4)选择前40个最大特征值所对应的特征向量作为主元,将原图象块向这40个特征向量上投影,所获得的投影系数就是这个子块的特征向量。
(5)求出所有子块的特征向量。
-(1) the application of 9 × 9 window of these images at random, a total sample of 200 sub-image (2) all sub-images according to out-phase into a 81-dimensional row vector (3) all 200 lines for KL transform vector, derived its corresponding covariance matrix of eigenvectors and eigenvalues, in descending order by eigenvalue and the corresponding eigenvector (4) a choice to 40 corresponding to the largest eigenvalue eigenvector as the PCA, the original image block to the 40 feature vectors on the projection, the projection coefficients obtained by this sub-block eigenvector. (5) calculated for all sub-block eigenvector. Platform: |
Size: 64512 |
Author:ly |
Hits:
Description: 特征向量 主要在MATLAB下实现.用于图像的PCA之前的准备工作,最后实现图像的主观检索。-Eigenvector mainly in MATLAB to achieve. The PCA for image preparation work before, and finally realize the subjective image retrieval. Platform: |
Size: 3072 |
Author:夏海波 |
Hits:
Description: 利用Sub-pattern PCA在Yale人脸库上进行人脸识别的matlab源代码,子模式主成分分析首先对原始图像分块,然后对相同位置的子图像分别建立子图像集,在每一个子图像集内使用PCA方法提取特征,建立子空间。对待识别图像,经相同分块后,分别将子图像向对应的子空间投影,提取特征。最后根据最近邻原则进行分类。-Sub-pattern PCA use in the Yale face database for face recognition on the matlab source code, sub-mode principal component analysis first of the original image block, and then the same sub-image, respectively, the location of the establishment of sub-image set, in each sub-image Set the use of PCA to extract the features, the establishment of sub-space. Treatment to identify images, by the same block, the respective sub-image to the corresponding sub-space projection, feature extraction. Finally, according to the principle of nearest neighbor classification. Platform: |
Size: 2048 |
Author:章格 |
Hits:
Description: 本文设计基于DCT的人脸识别系统,首先结合当今人脸识别的背景和发展状况讨论了人脸识别的研究内容及在各方面的应用;然后研究了人脸识别进行预处理,讨论了人脸识别预处理的其他方法,分析各种方法的利弊,最后采用DCT(离散余弦变换)实现人脸图像预处理中的降维处理;接下来对人脸图像的特征提取进行了研究,简单叙述了几何特征提取和代数特征提取,同时深入研究了基于DCT和PCA变换的人脸图像特征提取,从而实现是否对人脸识别系统识别率有所提高的研究;对于分类器的选择,本文对两种分类器进行了探讨,即最近邻分类器和BP神经网络分类器,同时采用BP神经网络分类器作为本次基于DCT的人脸识别系统设计的分类器,并对BP神经网络进行分类的算法进行设计,BP神经网络具有学习功能,只要采用本系统对训练图片进行训练,就可以记下图像的相关信息,对于测试图片,就可以很准确的识别出该图片是属于哪个的。最后,本文对整个人脸识别系统设计实验进行了实验分析,实验结果表明本文采用的方法切实有效。- This is the design of the DCT-based face recognition systems. First of all, the background light of the current face recognition and face recognition to discuss the development of research in all aspects of content and applications And then studied the pretreatment of face recognition to discuss the pre-treatment of other face recognition methods,and analysis of the pros and cons of various methods, finally, the use of DCT (discrete cosine transform) image pre-processing to achieve in the face of the reduced-order processing Next on the face image feature extraction have been studied, A brief description of the feature extraction and algebraic geometry feature extraction, while in-depth study based on the DCT and the PCA Transform face image feature extraction in order to achieve face recognition system to identify whether the rate of increase in the research For the choice of classifier, this paper carried out on two of classifier, that is, nearest neighbor classifier and BP neura Platform: |
Size: 422912 |
Author:刘文珍 |
Hits:
Description: We propose an algorithm for facial expression recognition which can classify the given image into one of the seven basic facial expression categories (happiness, sadness, fear, surprise, anger, disgust and neutral). PCA is used for dimensionality reduction in input data while retaining those characteristics of the data set that contribute most to its variance, by keeping lower-order principal components and ignoring higher-order ones. Such low-order components contain the "most important" aspects of the data. The extracted feature vectors in the reduced space are used to train the supervised Neural Network classifier. This approach results extremely powerful because it does not require the detection of any reference point or node grid. The proposed method is fast and can be used for real-time applications. Platform: |
Size: 21504 |
Author:mhm |
Hits:
Description: 计算机人脸识别技术( Face Reocgnition)就利用计算机分析人脸图像,从中提取出有效的识别信息,用来辨认身份的一门技术。[ 1 ]即对已知人脸进行标准化处理后,通过某种方法和数据库中的人脸样本进行匹配,寻找库中对应人脸及该人脸相关信息。人脸自动识别系统有两个主要技术环节,一是人脸定位,即从输入图像中找到人脸存在的位置,将人脸从背景中分割出来,二是对标准化后的人脸图像进行特征提取和识别。本文中介绍的PCA (特征脸)方法就是一种常用的人脸
特征提取方法。-Computer Face Recognition Technology (Face Reocgnition) on the use of computer analysis of facial image, to extract the valid identification information used to identify the status of a technology. [1] that is known to standardize treatment of face, through a method and a database of face samples for matching, search library, the corresponding face and the face-related information. Automatic face recognition system has two main technical aspects, first, face location, that is, from the input image to find the location of the face there, the faces will be split out from the background, the second is, the standard features of face images extraction and recognition. Described in this paper PCA (Eigenfaces) method is a common facial feature extraction method. Platform: |
Size: 224256 |
Author:Highjoe |
Hits:
Description: ) 使用分块的主成分分析方法(PCA)对人脸图像进行压缩编码。针对PCA方法计算量大的缺点,首先把问题转化成奇异值分解(SVD)问题,然后设计了特征空间的更新算法,通过递推,简化每一步计算的计算量,达到了实时编码的要求。 4) 在Windows平台下基于Video for Windows(VFW)接口开发了人脸视频图像编码和解码的实验系统,该系统实现了图像采集、图像显示、编码、解码等功能。-) The use of sub-blocks of principal component analysis (PCA) on the human face image coding. PCA method for large defects, first of all the issues into a singular value decomposition (SVD) problem, and then design a feature space of the update algorithm, recursive, simplifying the calculation of the amount calculated at each step to achieve real-time encoding requirements. 4) In the Windows platform based on Video for Windows (VFW) interfaces, the human face image coding and decoding video experimental system, the system achieved image acquisition, image display, encoding, decoding functions. Platform: |
Size: 1024 |
Author:周参 |
Hits:
Description: Eigenfaces: PCA tends to find a p-dimensional subspace
whose basis vectors correspond to the maximum
variance direction in the original image space (p N).
We called the new subspace defined by basis vectors “face
space”. First, all training faces are projected onto the face
space to find a set of weights that describes the contribution
of each vector. Then we project all testing faces onto the
face space to obtain a set of weights. Finally, we identify
the face by comparing a set of weights for the testing face
to sets of weights of training faces. Platform: |
Size: 11264 |
Author:sam |
Hits:
Description: this a good source matlab code for DTCWT,which can be used in image processing and multiscale presentation.-this is a good source matlab code for DTCWT,which can be used in image processing and multiscale presentation. Platform: |
Size: 1892352 |
Author:小芳 |
Hits:
Description: the code conducts the image compression of the gray scale image up to 90 using 4 algos fft wavelet pca and cosine transform-the code conducts the image compression of the gray scale image up to 90 using 4 algos fft wavelet pca and cosine transform Platform: |
Size: 1024 |
Author:vicky |
Hits:
Description: 1 SIFT 发展历程
SIFT算法由D.G.Lowe 1999年提出,2004年完善总结。后来Y.Ke将其描述子部分用PCA代替直方图的方式,对其进行改进。
2 SIFT 主要思想
SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量。
3 SIFT算法的主要特点:
a) SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性。
b) 独特性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配[23]。
c) 多量性,即使少数的几个物体也可以产生大量SIFT特征向量。
d) 高速性,经优化的SIFT匹配算法甚至可以达到实时的要求。
e) 可扩展性,可以很方便的与其他形式的特征向量进行联合。
4 SIFT算法步骤:
1) 检测尺度空间极值点
2) 精确定位极值点
3) 为每个关键点指定方向参数
4) 关键点描述子的生成
本包内容为sift算法matlab源码-1 SIFT course of development
SIFT algorithm by DGLowe in 1999, the perfect summary of 2004. Later Y.Ke its description of the sub-part of the histogram with PCA instead of its improvement.
2 the SIFT main idea
The SIFT algorithm is an algorithm to extract local features in scale space to find the extreme point of the extraction location, scale, rotation invariant.
3 the main features of the SIFT algorithm:
a) SIFT feature is the local characteristics of the image, zoom, rotate, scale, brightness change to maintain invariance, the perspective changes, affine transformation, the noise also maintain a certain degree of stability.
b) unique (Distinctiveness), informative, and mass characteristics database for fast, accurate matching [23].
c) large amounts, even if a handful of objects can also produce a large number of SIFT feature vectors.
d) high-speed and optimized SIFT matching algorithm can even achieve real-time requirements.
e) The scalability can be very convenient fe Platform: |
Size: 2831360 |
Author:李青彦 |
Hits:
Description: PCA可用于图像检测的盲取证方面,效果非常好-PCA can be used for blind image forensics testing, the effect is very good Platform: |
Size: 2048 |
Author:liumeihong |
Hits:
Description: 用PCA算法在matlab平台上对图像进行压缩与解压缩,内含测试图像,能直接在matlab上运行使用,对学习PCA算法有帮助。-PCA algorithm used in matlab platform for image compression and decompression, containing the test images, can be run directly on matlab, PCA algorithm is helpful for learning. Platform: |
Size: 31744 |
Author:刘松 |
Hits:
Description: 此代码为matlab代码,分为两个部分。第一部分实现K均值聚类算法应用它来压缩图像。在第二部分中,你将使用主成份分析法pca来实现人脸图像的低维表示。
-This code for the matlab code, is divided into two parts. The first part of the implementation of the K means clustering algorithm to compress the image. In the second part, you will use the principal component analysis method PCA to realize the low dimensional representation of the face image. Platform: |
Size: 11510784 |
Author:pudnkobe |
Hits:
Description: music高阶谱分析算法,LDPC码的完整的编译码,用于图像处理的独立分量分析,在matlab环境中自动识别连通区域的大小,matlab开发工具箱中的支持向量机,结合PCA的尺度不变特征变换(SIFT)算法,包含了阵列信号处理的常见算法。- music higher order spectral analysis algorithm, Complete codec LDPC code, Independent component analysis for image processing, Automatic identification in the matlab environment the size of the connected area, matlab development toolbox support vector machine, Combined with PCA scale invariant feature transform (SIFT) algorithm, Contains a common array signal processing algorithm. Platform: |
Size: 5120 |
Author:kuvzmyjr |
Hits:
Description: This toolbox is meant to facilitate the manipulation of images and video in Matlab. Its purpose is to complement, not replace, Matlab's Image Processing Toolbox, and in fact it requires that the Matlab Image Toolbox be installed. Emphasis has been placed on code efficiency and code reuse. Thanks to everyone who has given me feedback - you've helped make this toolbox more useful and easier to use.(The toolbox is divided into 7 parts, arranged by directory:
channels Robust image features, including HOG, for fast object detection.
classify Fast clustering, random ferns, RBF functions, PCA, etc.
detector Aggregate Channel Features (ACF) object detection code.
filters Routines for filtering images.
images Routines for manipulating and displaying images.
matlab General Matlab functions that should have been a part of Matlab.
videos Routines for annotating and displaying videos.) Platform: |
Size: 9680896 |
Author:redkisses
|
Hits:
Description: 非常经典的特征提取算法,经常用来做降维方法,但是也可以直接用来做特征提取,很适合图像处理入门,在人脸识别也经常用到(Very classic feature extraction algorithm, often used to do dimensionality reduction methods, but can also be used directly to do feature extraction, it is suitable for image processing, in face recognition is often used) Platform: |
Size: 6807552 |
Author:firefly1
|
Hits:
Description: 使用pca方法对图像进行特征提取,对训练集的20个人的共一百张人脸进行训练,使用adaboost算法生成强分类器,可以对测试集的人脸图片进行识别,且识别率较高(The PCA method is used to extract the features of the image, and the training is carried out for a total of 100 faces of 20 people in the training set. The AdaBoost algorithm is used to generate a strong classifier, which can recognize the face images in the test set with a high recognition rate) Platform: |
Size: 19835904 |
Author:王二愣子 |
Hits: