Location:
Search - PCA or LDA
Search list
Description: 这是一个MATLAB工具箱包括32个降维程序,主要包括 pca,lda,MDS等十几个程序包,对于图像处理非常具有参考价值- ,This Matlab toolbox implements 32 techniques for dimensionality reduction. These techniques are all available through the COMPUTE_MAPPING function or trhough the GUI. The following techniques are available:
- Principal Component Analysis ( PCA )
- Linear Discriminant Analysis ( LDA )
- Multidimensional scaling ( MDS )
- Probabilistic PCA ( ProbPCA )
- Factor analysis ( FactorAnalysis )
- Sammon mapping ( Sammon )
- Isomap ( Isomap )
- Landmark Isomap ( LandmarkIsomap )
- Locally Linear Embedding ( LLE )
- Laplacian Eigenmaps ( Laplacian )
- Hessian LLE ( HessianLLE )
- Local Tangent Space Alignment ( LTSA )
- Diffusion maps ( DiffusionMaps )
- Kernel PCA ( KernelPCA )
- Generalized Discriminant Analysis ( KernelLDA )
Platform: |
Size: 1108992 |
Author: yang |
Hits:
Description: PCA+LDA人脸识别,识别率高于单独PCA或LDA算法。需要matlab dimension reducation toolbox。-Face verification using PCA and LDA fusion. Better performance than single PCA or LDA algorithm. The image database is included. Matlab dimension reduction toolbox is requrired.
Platform: |
Size: 1975296 |
Author: taiji |
Hits:
Description: 用LDA及pca算法分析特征,选择最好的特征。-This program uses LDA and PCA to analyze features from weka arff file. The projection on PCA and LDA space visualizes the goodness of the features. If the features are good enough to be classified well they should have some kind of separation when projected on a 1 dimensional LDA or a 3 dimensional PCA space.
This MATLAB script assumes that the arff file has 2 classes named "Positive" and "Negative". However, it can be extended into any amount of class labels.
Platform: |
Size: 369664 |
Author: 易和 |
Hits:
Description: this paper has used gabor filter for feature extraction and for feature reduction PCA+LDA has been used. for classification minimum distance classifier is used. PCA+LDA shows better performance than PCA or LDA alone
Platform: |
Size: 307200 |
Author: nanhi |
Hits:
Description: 将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,投影后保证模式样本在新的子空间有最大的类间距离和最小的类内距离,即模式在该空间中有最佳的可分离性,与PCA区别:LDA考虑分类标签,属于有监督分类。-Linear discriminant analysis (LDA) is a generalization of Fisher s linear discriminant, a method used in statistics, pattern recognition and machine learning to find a linear combination of features that characterizes or separates two or more classes of objects or events. The resulting combination may be used as a linear classifier, or, more commonly, for dimensionality reduction before later classification.
Platform: |
Size: 22528 |
Author: 思考者 |
Hits: