Location:
Search - QG_step_f
Search list
Description: 集合卡尔曼滤波(EnKF) 数据同化方法可以避免了EKF 中协方差演变方程预报过程中出现的计算不准确和关于协方差矩阵的大量数据的存储问题,最主要的是可以有效的控制估计误差方差的增长,改善预报的效果。-Ensemble Kalman Filter (EnKF) data assimilation methods can be avoided in the EKF covariance forecasting the evolution equation arising in the course of the calculation is not accurate and on the covariance matrix of a large amount of data storage problems, the most important and effective control can be estimated error variance of the growth, improvement in forecasting results.
Platform: |
Size: 5144576 |
Author: 胡军 |
Hits: