Location:
Search - Runge Kutta r
Search list
Description: 较著名的解初值微分方程的数值方法——自适应Runge-Kutta-Fehlberg算法
Platform: |
Size: 987 |
Author: 田建飞 |
Hits:
Description: 用matlab编写的4阶R-K程序。对于仿真可能有所帮助。-using Matlab prepared by the four bands R-K procedure. For the simulation might be helpful.
Platform: |
Size: 6144 |
Author: 作风小 |
Hits:
Description: 提供了4种解常微分方程组的c++代码:定步长四阶龙格-库塔(Runge-Kutta)法(RK4->RKDUMP); 自适应变步长的龙格-库塔(Runge-Kutta)法(RKQC->ODEINT); 改进的中点法(MMID); 外推法(BSSTEP(RZEXTR(有理函数), PZEXTR(多项式));-provide four kinds of solutions of ordinary differential equations c code : There will be four bands step Runge- Kutta (Runge- Kutta) Act (RK4-
Platform: |
Size: 5120 |
Author: ldg |
Hits:
Description: R—K方法的精确度最高,,改进欧拉法的精度比欧拉法的精确度要高。-R-K of the highest accuracy, and improve the accuracy of Eulerian method than Eulerian method to the high precision.
Platform: |
Size: 1024 |
Author: gh |
Hits:
Description: 较著名的解初值微分方程的数值方法——自适应Runge-Kutta-Fehlberg算法-More well-known solutions of initial value differential equations numerical methods- adaptive Runge-Kutta-Fehlberg algorithm
Platform: |
Size: 1024 |
Author: 田建飞 |
Hits:
Description: (有源代码)数值分析作业,本文主要包括两个部分,第一部分是常微分方程(ODE)的三个实验题,第二部分是有关的拓展讨论,包括高阶常微分的求解和边值问题的求解(BVP).文中的算法和算例都是基于Matlab计算的.ODE问题从刚性(STIFFNESS)来看分为非刚性的问题和刚性的问题,刚性问题(如大系数的VDP方程)用通常的方法如ODE45来求解,效率会很低,用ODE15S等,则效率会高多了.而通常的非刚性问题,用ODE45来求解会有很好的效果.从阶次来看可以分为高阶微分方程和一阶常微分方程,高阶的微分方程一般可以化为状态空间(STATE SPACE)的低阶微分方程来求解.从微分方程的性态看来,主要是微分方程式一阶导系数大的时候,步长应该选得响应的小些.或者如果问题的性态不是太好估计的话,用较小的步长是比较好的,此外的话Adams多步法在小步长的时候效率比R-K(RUNGE-KUTTA)方法要好些,而精度也高些,但是稳定区间要小些.从初值和边值来看,也是显著的不同的.此外对于非线性常微分方程还有打靶法,胞映射方法等.而对于微分方程稳定性的研究,则诸如相平面图等也是不可缺少的工具.值得提出的是,除了用ode系类函数外,用simulink等等模块图来求解微分方程也是一种非常不错的方法,甚至是更有优势的方法(在应用的角度来说).-(Source code) numerical analysis homework, this docment includes two parts, the first is ordinary differential equations (ODE) of the three examples, the second part is about the expansion of the discussion, including the higher-order ordinary differential & boundary value solution Problems (BVP). the text of the algorithm and numerical examples are based on the Matlab. ODE from the rigid (STIFFNESS) look into the issue of non-rigid and rigid problem, rigid problems (such as large coefficient VDP equation) such as using the always method ODE45 used to solve the problems , efficiency will be low, with ODE15S the other hand, many of the high efficiency. and the usual problem of non-rigid, there will be used to solve ODE45 very good results. Judging from the order can be for high-order differential equations and first-order ordinary differential equations, higher-order differential equations can be transformed into a general state space (STATE SPACE) used to solve the low-order different
Platform: |
Size: 351232 |
Author: wjl |
Hits:
Description: 四阶经典的龙格-库塔公式的matlab实现-Classical fourth-order Runge- Kutta formula matlab implementation
Platform: |
Size: 228352 |
Author: YAN |
Hits:
Description: 利用四阶龙格-库塔方法来求解Van der Pol 方程-Using fourth-order Runge- Kutta method to solve the Van der Pol equation
Platform: |
Size: 616448 |
Author: |
Hits:
Description: 四阶龙格库塔法,用C++编写,很有参考价值-Fourth-order Runge-Kutta method, written in C, a good reference
Platform: |
Size: 5120 |
Author: ship |
Hits:
Description:
R 四阶经典的龙格-库塔公式的matlab实现 Other systems 其他 172-R fourth-order classical Runge- Kutta formula matlab Other systems other 172 ...
Platform: |
Size: 54272 |
Author: 万秀 |
Hits:
Description: H-R生物神经元模型用四阶龙格库塔方法求解-HR biological neuron model with fourth-order Runge-Kutta method for solving
Platform: |
Size: 1024 |
Author: wangyuan |
Hits:
Description: 定步长的龙格库塔的5阶算法,计算速度快,适用的计算精度要求不是太高的情况。-Fixed step size of 5-order Runge-Kutta algorithm to calculate the speed, accuracy requirements are not applicable to the case too.
Platform: |
Size: 4096 |
Author: longaaa123 |
Hits:
Description: 定步长的4阶龙格库塔算法源代码,计算速度快,适用于计算精度要求不太高的情况。-Fixed step size fourth-order Runge-Kutta algorithm source code, calculate the speed, accuracy requirements are not applicable to the case too.
Platform: |
Size: 3072 |
Author: longaaa123 |
Hits:
Description: 该程序包含了数值积分中龙格库塔方法的核心程序并能够求解动力系统中的响应-This programme contains the kenerl code of Runge-Kutta in numerical integration and can solve the response of the dynamic systems
Platform: |
Size: 1024 |
Author: 颜冰 |
Hits:
Description: 求解微分方程初值问题的Runge-Kutta 方法-Runge-Kutta method
Platform: |
Size: 2048 |
Author: Benzi |
Hits:
Description: 数值分析实验,龙格库塔方法稳定性实验自己编写。-Numerical analysis of experimental, Runge-Kutta methods stability test write your own.
Platform: |
Size: 1024 |
Author: 石松 |
Hits:
Description: 用龙格库塔法求解微分方程组初值问题的matlab实例程序-a matlab example program about using Runge-Kutta method to solve the initial value problem of differential equations
Platform: |
Size: 16384 |
Author: 凌霄 |
Hits:
Description: 关于Runge-Kutta方法,该方法是用来解形如y'=f(t,y)的常微分方程的经典的4阶R-K方法,用fortran语言编写(With respect to the Runge-Kutta method, the method is used to solve the classical 4 order R-K method of ordinary differential equations such as y'=f (T, y), and is written in FORTRAN language)
Platform: |
Size: 1024 |
Author: sophya
|
Hits: