Welcome![Sign In][Sign Up]
Location:
Search - Runge_Kutta

Search list

[Other resourceRunge_Kutta GUI

Description: 用matlab编写的4阶R-K程序。对于仿真可能有所帮助。-using Matlab prepared by the four bands R-K procedure. For the simulation might be helpful.
Platform: | Size: 6615 | Author: 作风小 | Hits:

[Other resourcenum_analysis

Description: 用vc实现数值分析中常微分初值问题的数值解法,使用eular和runge_kutta法。-with vc often achieve numerical analysis of the initial differential method. eular and use runge_kutta law.
Platform: | Size: 46784 | Author: hj | Hits:

[OtherRunge_kutta

Description: R—K方法的精确度最高,,改进欧拉法的精度比欧拉法的精确度要高。-R-K of the highest accuracy, and improve the accuracy of Eulerian method than Eulerian method to the high precision.
Platform: | Size: 1102 | Author: gh | Hits:

[Other resourcediedaisuanfa

Description: 解线性方程组的Jacobi,Gauss_Seidel,SOR迭代,以及四级四阶Runge_Kutta方法,Adams预估校正算法
Platform: | Size: 2103 | Author: xinrui | Hits:

[Mathimatics-Numerical algorithmsRunge_Kutta

Description: Runge_Kutta算法 在计算方法中对微分方程进行求解,迭代进行求解,效率较高
Platform: | Size: 6324 | Author: yang | Hits:

[matlabRunge_Kutta GUI

Description: 用matlab编写的4阶R-K程序。对于仿真可能有所帮助。-using Matlab prepared by the four bands R-K procedure. For the simulation might be helpful.
Platform: | Size: 6144 | Author: 作风小 | Hits:

[Algorithmnum_analysis

Description: 用vc实现数值分析中常微分初值问题的数值解法,使用eular和runge_kutta法。-with vc often achieve numerical analysis of the initial differential method. eular and use runge_kutta law.
Platform: | Size: 277504 | Author: hj | Hits:

[OtherRunge_kutta

Description: R—K方法的精确度最高,,改进欧拉法的精度比欧拉法的精确度要高。-R-K of the highest accuracy, and improve the accuracy of Eulerian method than Eulerian method to the high precision.
Platform: | Size: 1024 | Author: gh | Hits:

[Mathimatics-Numerical algorithmsRunge_Kutta

Description: Runge_Kutta算法 在计算方法中对微分方程进行求解,迭代进行求解,效率较高-Runge_Kutta algorithm in the calculation method for solving differential equations, iterative solve, more efficient
Platform: | Size: 236544 | Author: yang | Hits:

[Algorithmrunge_kutta

Description: 采用4阶runge_kutta法求解给定初始值的常微分方程(组)。该方法具有较好的精度。-Using 4-order method runge_kutta given initial value of the ordinary differential equations (group). The method has good accuracy.
Platform: | Size: 8192 | Author: 小龙 | Hits:

[Algorithmrunge_kutta

Description: 本文用龙格库塔法求解了不拉休斯解。龙格库塔法是求解高阶微分方程的有力工具,本文对龙格库塔方法作了简要介绍,并附上了matlab源程序。-in this paper a runge_kutta method was used to slove the blasius equation in the environment of matlab.
Platform: | Size: 29696 | Author: 黄明 | Hits:

[matlabrunge_kutta

Description: runge-kutta code with c-runge-kutta code with cpp
Platform: | Size: 1024 | Author: mahyar | Hits:

[matlabFractional_Differential_Equations_of_Runge_Kutta_m

Description: 求解分数阶微分方程的Runge_Kutta方法Fractional Differential Equations of Runge_Kutta method-Fractional Differential Equations of Runge_Kutta method
Platform: | Size: 1568768 | Author: lin | Hits:

[matlabrunge_kutta

Description: runge_kutta 四阶算法 还有Simpson算法-runge_kutta Simpson algorithm of fourth order algorithms are
Platform: | Size: 2048 | Author: better1234 | Hits:

[matlabrunge_kutta

Description: runge_kutta methode for differensial aquetion
Platform: | Size: 1024 | Author: ratika chandra | Hits:

[OtherRunge_Kutta

Description: 重点研究广义Runge_Kutta法的应用-Method focuses on the application of the generalized Runge_Kutta
Platform: | Size: 108544 | Author: Huo | Hits:

[Algorithmrunge_kutta

Description: 本程序代码实现了龙格库塔法,龙格库塔法是一种在工程上应用广泛的高精度单步算法。-the code realize the runge_kutta
Platform: | Size: 1024 | Author: yongzhi | Hits:

[matlabRunge_Kutta

Description: 编写四阶 Runge_Kutta 公式的计算程序,对线性状态方程进行仿真 -Preparation of fourth order Runge_Kutta formula calculation procedures, the linear equation of state for simulation
Platform: | Size: 1024 | Author: | Hits:

[matlabRunge_Kutta

Description: 通过matlab平时,实现龙格库塔算法。(using matlab to solve Runge_Kutta problem)
Platform: | Size: 14336 | Author: swjtuzhc | Hits:

[matlabrunge_kutta

Description: 龙格-库塔法(Runge-Kutta methods)是用于非线性常微分方程的解的重要的一类隐式或显式迭代法,本程序是利用四阶龙格库塔法解的matlab实现(Runge-Kutta 4th order method realized in matlab codes)
Platform: | Size: 1024 | Author: leafxu | Hits:
« 12 3 »

CodeBus www.codebus.net