Welcome![Sign In][Sign Up]
Location:
Search - S-Spline.e

Search list

[Graph DrawingSSpline2

Description: 影楼照片无损放大软件无须安装,把软件文件夹复制到硬盘里,直接执行S-Spline.exe可以和自己的算法比较一下 -影楼照片无损放大软件无须安装,把软件文件夹复制到硬盘里,直接执行S-Spline.exe就可以了,此版本已经汉化!
Platform: | Size: 1050624 | Author: why354 | Hits:

[matlabForcedPendulum

Description: This simulink model simulates the damped driven pendulum, showing it s chaotic motion. theta = angle of pendulum omega = (d/dt)theta = angular velocity Gamma(t) = gcos(phi) = Force omega_d = (d/dt) phi Gamma(t) = (d/dt)omega + omega/Q + sin(theta) Play with the initial conditions (omega_0, theta_0, phi_0 = omega(t=0), theta(t=0), phi(t=0)) and the system parameters (g, Q, omega_d) and the solver parameters/method. Chaos can be seen for Q=2, omega_d=w/3. The program outputs to Matlab time, theta(time) & omega(time). Plot the phase space via: plot(mod(theta+pi, 2*pi)-pi, omega, . ) Plot the Poincare sections using: t_P = (0:2*pi/omega_d:max(time)) plot(mod(spline(time, theta+pi, t_P), 2*pi)-pi, spline(time, omega, t_P), . ) System is described in: "Fractal basin boundaries and intermittency in the driven damped pendulum" E. G. Gwinn and R. M. Westervelt PRA 33(6):4143 (1986) -This simulink model simulates the damped driven pendulum, showing it s chaotic motion. theta = angle of pendulum omega = (d/dt)theta = angular velocity Gamma(t) = gcos(phi) = Force omega_d = (d/dt) phi Gamma(t) = (d/dt)omega+ omega/Q+ sin(theta) Play with the initial conditions (omega_0, theta_0, phi_0 = omega(t=0), theta(t=0), phi(t=0)) and the system parameters (g, Q, omega_d) and the solver parameters/method. Chaos can be seen for Q=2, omega_d=w/3. The program outputs to Matlab time, theta(time) & omega(time). Plot the phase space via: plot(mod(theta+pi, 2*pi)-pi, omega, . ) Plot the Poincare sections using: t_P = (0:2*pi/omega_d:max(time)) plot(mod(spline(time, theta+pi, t_P), 2*pi)-pi, spline(time, omega, t_P), . ) System is described in: "Fractal basin boundaries and intermittency in the driven damped pendulum" E. G. Gwinn and R. M. Westervelt PRA 33(6):4143 (1986)
Platform: | Size: 8192 | Author: Mike Gao | Hits:

[Special EffectsCatmull-Clark-

Description: 设P(m,n)是初始控制点列,即原曲面的点(m行n列)。Q(m,n)是一次细分后得到的曲面的控制节点。 此函数采用Catmull-Clark细分曲面算法,对双三次B样条曲面细分,即m=n=4。 利用我们在13章第四节学过的知识,有公式MQM =SMPM S ,其中M,S可由课件知 构造初始控制点列(p1,p2),其中p1是P的行坐标,p2是P的列坐标 -Let P (m, n) is the initial control point of the column, i.e. the original surface of the point (m rows n columns). Q (m, n) is the control node of the surfaces one after subdivision. This function takes a Catmull-Clark subdivision surface algorithm, the bi-cubic B-spline surface subdivision, ie m = n = 4. Using knowledge in Chapter 13, section IV, formula MQM, ' = SMPM' S' , wherein M, S by courseware known structure the initial control point of the column (p1, p2), where p1 is the row coordinate of P, p2 column coordinates of P
Platform: | Size: 9216 | Author: 户蕾蕾 | Hits:

CodeBus www.codebus.net