Location:
Search - S-Spline.e
Search list
Description: 影楼照片无损放大软件无须安装,把软件文件夹复制到硬盘里,直接执行S-Spline.exe可以和自己的算法比较一下
-影楼照片无损放大软件无须安装,把软件文件夹复制到硬盘里,直接执行S-Spline.exe就可以了,此版本已经汉化!
Platform: |
Size: 1050624 |
Author: why354 |
Hits:
Description: This simulink model simulates the damped driven pendulum, showing it s chaotic motion.
theta = angle of pendulum
omega = (d/dt)theta = angular velocity
Gamma(t) = gcos(phi) = Force
omega_d = (d/dt) phi
Gamma(t) = (d/dt)omega + omega/Q + sin(theta)
Play with the initial conditions (omega_0, theta_0, phi_0 = omega(t=0), theta(t=0), phi(t=0)) and the system parameters (g, Q, omega_d) and the solver parameters/method.
Chaos can be seen for Q=2, omega_d=w/3.
The program outputs to Matlab time, theta(time) & omega(time).
Plot the phase space via:
plot(mod(theta+pi, 2*pi)-pi, omega, . )
Plot the Poincare sections using:
t_P = (0:2*pi/omega_d:max(time))
plot(mod(spline(time, theta+pi, t_P), 2*pi)-pi, spline(time, omega, t_P), . )
System is described in:
"Fractal basin boundaries and intermittency in the driven damped pendulum"
E. G. Gwinn and R. M. Westervelt
PRA 33(6):4143 (1986)
-This simulink model simulates the damped driven pendulum, showing it s chaotic motion.
theta = angle of pendulum
omega = (d/dt)theta = angular velocity
Gamma(t) = gcos(phi) = Force
omega_d = (d/dt) phi
Gamma(t) = (d/dt)omega+ omega/Q+ sin(theta)
Play with the initial conditions (omega_0, theta_0, phi_0 = omega(t=0), theta(t=0), phi(t=0)) and the system parameters (g, Q, omega_d) and the solver parameters/method.
Chaos can be seen for Q=2, omega_d=w/3.
The program outputs to Matlab time, theta(time) & omega(time).
Plot the phase space via:
plot(mod(theta+pi, 2*pi)-pi, omega, . )
Plot the Poincare sections using:
t_P = (0:2*pi/omega_d:max(time))
plot(mod(spline(time, theta+pi, t_P), 2*pi)-pi, spline(time, omega, t_P), . )
System is described in:
"Fractal basin boundaries and intermittency in the driven damped pendulum"
E. G. Gwinn and R. M. Westervelt
PRA 33(6):4143 (1986)
Platform: |
Size: 8192 |
Author: Mike Gao |
Hits:
Description: 设P(m,n)是初始控制点列,即原曲面的点(m行n列)。Q(m,n)是一次细分后得到的曲面的控制节点。
此函数采用Catmull-Clark细分曲面算法,对双三次B样条曲面细分,即m=n=4。
利用我们在13章第四节学过的知识,有公式MQM =SMPM S ,其中M,S可由课件知
构造初始控制点列(p1,p2),其中p1是P的行坐标,p2是P的列坐标
-Let P (m, n) is the initial control point of the column, i.e. the original surface of the point (m rows n columns). Q (m, n) is the control node of the surfaces one after subdivision. This function takes a Catmull-Clark subdivision surface algorithm, the bi-cubic B-spline surface subdivision, ie m = n = 4. Using knowledge in Chapter 13, section IV, formula MQM, ' = SMPM' S' , wherein M, S by courseware known structure the initial control point of the column (p1, p2), where p1 is the row coordinate of P, p2 column coordinates of P
Platform: |
Size: 9216 |
Author: 户蕾蕾 |
Hits: