Welcome![Sign In][Sign Up]
Location:
Search - STSA

Search list

[Speech/Voice recognition/combineMMSESTSA84

Description: mmse-stsa源程序,主要原理可参考EPHRAIM 84年的文献
Platform: | Size: 3657 | Author: tang | Hits:

[Speech/Voice recognition/combinewienerfilter

Description: 维纳滤波,用于语音增强,具体原理可参考SCALART 1996,该程序与MMSE-STSA配合使用
Platform: | Size: 3301 | Author: tang | Hits:

[Other resourceSTSA-Toolbox-0-03

Description: 这个MATLAB程序是用于对音频信号进行降噪处理,可以在这个软件上进行更改实现自己的功能。
Platform: | Size: 1363777 | Author: 颜靖华 | Hits:

[Speech/Voice recognition/combineMMSE-denoising

Description: MMSE语音增强算法,研究此领域的人不可不看哦-MMSE voice enhancement algorithms, and research in this area who can not flash open her cloak
Platform: | Size: 2048 | Author: yaohua | Hits:

[Speech/Voice recognition/combineMMSESTSA84

Description: mmse-stsa源程序,主要原理可参考EPHRAIM 84年的文献 -mmse-stsa source, the main principle of reference EPHRAIM 84 years of literature
Platform: | Size: 3072 | Author: tang | Hits:

[Speech/Voice recognition/combinewienerfilter

Description: 维纳滤波,用于语音增强,具体原理可参考SCALART 1996,该程序与MMSE-STSA配合使用
Platform: | Size: 3072 | Author: tang | Hits:

[matlabSTSA-Toolbox-0-03

Description: 这个MATLAB程序是用于对音频信号进行降噪处理,可以在这个软件上进行更改实现自己的功能。-The MATLAB program is used to handle audio signal noise reduction, you can change the software realize the functions of their own.
Platform: | Size: 1363968 | Author: 颜靖华 | Hits:

[Program docMultidimensional-STSA-Estimators-

Description: Multidimensional STSA Estimators for Speech.pdf
Platform: | Size: 419840 | Author: zhangke | Hits:

[source in ebookMMSESTSA85

Description: 最经典的语音降噪算法,MMSE-STSA 保证可用,记得好评-Shor time Spectral Amplitude Minimum Mean Square Error Method for Denoising noisy speech. based on log-Spectral MMSE Ephraim et al (1985)
Platform: | Size: 3072 | Author: 杨浩 | Hits:

[Software EngineeringThe-Systematic-Trajectory-Search-Algorithm-for-Fe

Description: In this paper we present the systematic trajectory search algorithm (STSA) which first globally explores the solution space then makes thorough local searches in promising areas. The STSA has been tested on training feedforward neural networks to solve the n-bit parity problem of various sizes and two real medical diagnosis problems. The experimental results show that the feedforward neural networks trained by the proposed algorithm have very good classification ability.
Platform: | Size: 340992 | Author: samir | Hits:

CodeBus www.codebus.net