Welcome![Sign In][Sign Up]
Location:
Search - Sierpinski gasket

Search list

[Fractal programSierpinski_1

Description: 本程序利用迭代递归算法实现,可以画出正三角形构成的Sierpinski垫片,输入条件为正三角形的中心坐标和边长。-the iterative procedure recursive algorithm, sense regular triangle constitutes the Sierpinski gasket, import conditions for the regular triangle coordinates of the center and side length.
Platform: | Size: 26624 | Author: 王凯 | Hits:

[Fractal programseripinski_2

Description: 本程序利用迭代递归算法可以绘制任意三角形的Sierpinski垫片,包括不是正三角形的,输入条件为三角形三个顶点的坐标。-the iterative procedure recursive algorithm can draw arbitrary triangular Sierpinski gasket, not including the regular triangle, the conditions for the importation of three vertices of the triangle coordinates.
Platform: | Size: 41984 | Author: 王凯 | Hits:

[Fractal programsierpinski_dt

Description: 利用分形中的迭代和递归算法实现Sierpinski地毯,程序简单易懂,改动程序中的n值即可控制递归次数。-use fractal iterative and recursive algorithm Sierpinski gasket, procedures simplified, changes to the procedures used for the control of n number of recursive.
Platform: | Size: 27648 | Author: 王凯 | Hits:

[source in ebooksierpinski1

Description: 内含生长出来的sierpinski垫片源代码。双击F_move04.exe文件,程序运行;双击工程1.vbp文件,进入编辑环境。-containing the source code sierpinski gasket. Double-click F_move04.exe documents, operating procedures; Double-click a project. Vbp documents to enter editing environment.
Platform: | Size: 7168 | Author: 王志伟 | Hits:

[source in ebooksierpinski2

Description: 内含摇摆的sierpinski垫片源代码。双击F_move05.exe文件,程序运行;双击工程1.vbp文件,进入编辑环境-intron swinging sierpinski gasket source code. Double-click F_move05.exe documents, operating procedures; Double-click a project. Vbp documents to enter editing environment
Platform: | Size: 7168 | Author: 王志伟 | Hits:

[OpenGL programThe_Sierpinski_Gasket

Description: 编写用OpenGL实现The Sierpinski Gasket的程序.-prepared using OpenGL The Sierpinski gasket procedures.
Platform: | Size: 11264 | Author: 天斜 | Hits:

[OpenGL programSierpinskiGasket3D

Description: 使用随机方式Sierpinski Gasket 3D的图形,对于学习openGL使用者是很棒的范例-use random Sierpinski gasket 3D graphics, learning openGL users are terrific examples
Platform: | Size: 1024 | Author: 张嘉智 | Hits:

[ERP-EIP-OA-Portal4

Description: 分形程序,sierpinski三角形图形绘制,采用c++编程源程序-Fractal procedures, sierpinski triangle Rendering using c++ Programming source code
Platform: | Size: 1888256 | Author: heweijun | Hits:

[OpenGL programsierpinski(2Dimension)

Description: 该程序是一个二维的Sierpinski镂垫程序,是在VC++MFC环境下利用OpenGL编写的,是一个二维镂垫,采用递归方法,从一个三角形出发,通过对三角形三边平分把它分解成四个三角形,去掉中间那一个三角形,对其余三个三角形重复同样的过程,直到中间那个三角形的面积很小为止。该程序对初学分形理论者可以给予很好的启示。-The program is a two-dimensional Sierpinski gasket procedure is VC++ MFC environment prepared by the use of OpenGL is a two-dimensional gasket, using recursive methods, starting from a triangle, through the trilateral triangle equally to It breaks down into four triangles, remove the middle of a triangle, of the remaining three triangles to repeat the same process, until the middle of the triangle is very small so far. The program of fractal theory of learning can give a good insight.
Platform: | Size: 3549184 | Author: 蒋娟芬 | Hits:

[OpenGL programRotateAndTranslateASierpinski(3Dimension)

Description: 该程序是一个三维的Sierpinski镂垫程序,是在VC++MFC环境下利用OpenGL编写的,并且可以通过鼠标和键盘旋转和移动该三维镂垫,采用递归方法,使用四个初始顶点定义一个四面体,可以随即选取四点作为四面体的四个顶点,条件是4点中任意3点不共线。而在该程序中必须进行隐藏面消除,同时该程序对初学分形理论者可以给予很好的启示。-The program is a three-dimensional Sierpinski gasket procedure is VC++ MFC environment prepared to use OpenGL, and mouse and keyboard can rotate and move the three-dimensional gasket using recursive methods, the use of the four initial vertex the definition of a tetrahedron, you can then select the four points as a tetrahedron of four vertices, on the condition that arbitrary 4:00 not 3:00 collinear. And in the process must be carried out to eliminate the hidden face, while the program for beginner fractal theory can give a good insight.
Platform: | Size: 3556352 | Author: 蒋娟芬 | Hits:

[Graph DrawingSierpinski

Description: 使用C和OPEN GL 绘制Sierpinski镂垫,包括二维和三维。-The use of C and OPEN GL drawing Sierpinski gasket, including the two-dimensional and three-dimensional.
Platform: | Size: 2048 | Author: liutao | Hits:

[Fractal programgasket

Description: Program to recursively subdivide a tetrahedron to from 3D Sierpinski gasket. The number of recursive steps is to be specified by the user-Program to recursively subdivide a tetrahedron to from 3D Sierpinski gasket. The number of recursive steps is to be specified by the user
Platform: | Size: 218112 | Author: Sandesh | Hits:

[OpenGL programcode

Description: 图形学The Sierpinski Gasket 3D-The Sierpinski Gasket 3D Graphics
Platform: | Size: 237568 | Author: xueyun | Hits:

[Picture ViewerSierpinski

Description: 用VC++6.0环境实现的简单的Sierpinski垫片图形生成-Using VC++6.0 environment to achieve a simple Sierpinski gasket graph generation
Platform: | Size: 1165312 | Author: gruntz | Hits:

[Special EffectsSierpinski

Description: 一个基本的算法,Sierpinski垫片算法实例-A basic algorithm, Sierpinski gasket algorithm for instance
Platform: | Size: 240640 | Author: dengqi | Hits:

[OpenGL programSierpinski-gasket

Description: 用opengl和glut实现的谢尔平斯基镂垫(Sierpinski gasket),适合初学者。-Sierpinski gasket,using opengl.
Platform: | Size: 99328 | Author: 杨超 | Hits:

[OpenGL programSierpinski-Gasket-

Description: 利用OpenGL实现Sierpinski Gasket分型三角形的绘制-Make the Sierpinski Gasket by OpenGL
Platform: | Size: 4096 | Author: 王鹏飞 | Hits:

[Internet-NetworkSierpinski-Gasket-

Description: 利用OpenGL实现Sierpinski Gasket分型三角形的绘制-Make the Sierpinski Gasket by OpenGL
Platform: | Size: 4096 | Author: 巴洛特利 | Hits:

[OpenGL programSierpinski-Gasket

Description: 3D Sierpinski Gasket分形图的绘制-Draw 3D Sierpinski Gasket fractal graph
Platform: | Size: 2048 | Author: 刘悠 | Hits:

[2D GraphicSierpinski-Gasket

Description: 1.1绘制Sierpinski垫片 (一)绘制Sierpinski垫片(图1.1a)通过查阅代码(图11); (b)添加鼠标控制,让用户能够用鼠标单击指定三角形顶点(参照图1.1C)。(详情见附件里图片)-1.1 Draw Sierpinski Gasket (a) Draw the Sierpinski Gasket (Fig. 1.1a) by referring to the code (Fig. 1.1b) (b) Add the mouse control, and let users be able to specify the triangle vertices with mouse click (referring to Fig. 1.1c).
Platform: | Size: 29696 | Author: | Hits:
« 12 3 4 »

CodeBus www.codebus.net