CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - Takagi Sugeno
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - Takagi Sugeno - List
[
Other resource
]
AdaptiveFuzzyControlSystem
DL : 1
:运用动力学原理建立了小车-倒摆的仿真模型, 并以对象输入输出的测试数据为依据,讨 论了Takagi-Sugeno 模糊模型的参数辨识,提出了模糊逆模型控制方案,基于此借助Matlab 的 Simulink 设计了小车-倒摆的动态模型及其模糊自适应控制系统。仿真结果证明了本文采用的控制 策略的有效性。
Update
: 2008-10-13
Size
: 242.4kb
Publisher
:
daizhk
[
Other resource
]
fuzzy
DL : 0
The neuro-fuzzy software for identification and data analysis has been implemented in the MATLAB language ver. 4.2. The software trains a fuzzy architecture, inspired to Takagi-Sugeno approach, on the basis of a training set of N (single) output-(multi) input samples. The returned model has the form 1) if input1 is A11 and input 2 is A12 then output =f1(input1,input2) 2) if input1 is A21 and input 2 is A22 then output =f2(input1,input2) 看不懂,据高手说,非常有用。
Update
: 2008-10-13
Size
: 50.08kb
Publisher
:
beyonddoor
[
Software Engineering
]
AdaptiveFuzzyControlSystem
DL : 0
:运用动力学原理建立了小车-倒摆的仿真模型, 并以对象输入输出的测试数据为依据,讨 论了Takagi-Sugeno 模糊模型的参数辨识,提出了模糊逆模型控制方案,基于此借助Matlab 的 Simulink 设计了小车-倒摆的动态模型及其模糊自适应控制系统。仿真结果证明了本文采用的控制 策略的有效性。-: The use of dynamic theory to establish a car- inverted pendulum simulation model and the object input and output test data as the basis to discuss the Takagi-Sugeno fuzzy model parameter identification, the fuzzy inverse model control scheme, based on the use of Matlab Simulink design of the car- inverted pendulum dynamic model and the fuzzy adaptive control system. Simulation results show this paper, the effectiveness of the control strategy.
Update
: 2025-02-19
Size
: 242kb
Publisher
:
daizhk
[
AI-NN-PR
]
fuzzy
DL : 0
The neuro-fuzzy software for identification and data analysis has been implemented in the MATLAB language ver. 4.2. The software trains a fuzzy architecture, inspired to Takagi-Sugeno approach, on the basis of a training set of N (single) output-(multi) input samples. The returned model has the form 1) if input1 is A11 and input 2 is A12 then output =f1(input1,input2) 2) if input1 is A21 and input 2 is A22 then output =f2(input1,input2) 看不懂,据高手说,非常有用。-The neuro-fuzzy software for identification and data analysis has been implemented in the MATLAB language ver. 4.2. The software trains a fuzzy architecture, inspired to Takagi-Sugeno approach, on the basis of a training set of N (single) output-( multi) input samples.The returned model has the form1) if input1 is A11 and input 2 is A12 then output = f1 (input1, input2) 2) if input1 is A21 and input 2 is A22 then output = f2 (input1, input2) can not read, according to experts said that very useful.
Update
: 2025-02-19
Size
: 50kb
Publisher
:
beyonddoor
[
matlab
]
FHSVD
DL : 0
HankelToeplitz and Takagi Factorization Package
Update
: 2025-02-19
Size
: 1kb
Publisher
:
george
[
AI-NN-PR
]
mohu
DL : 0
高木关野模糊系统(将高木关野模糊系统应用到BP神经网络中)-Takagi Sugeno fuzzy system (to Takagi Sugeno fuzzy system applied to the BP neural network)
Update
: 2025-02-19
Size
: 2kb
Publisher
:
tiantian
[
matlab
]
75448176matlab_PID
DL : 0
Update
: 2025-02-19
Size
: 203kb
Publisher
:
陈立
[
matlab
]
lm_ts
DL : 0
For training Takagi-Sugeno fuzzy systems using the Levenberg-Marquardt method
Update
: 2025-02-19
Size
: 2kb
Publisher
:
ffault
[
AI-NN-PR
]
user
DL : 0
C++ codes for takagi-Sugeno fuzzy controller
Update
: 2025-02-19
Size
: 3kb
Publisher
:
chiruri mae
[
AI-NN-PR
]
Takagi-Sugeno-FuzzyModelingforProcessControl
DL : 0
2:Takagi-Sugeno fuzzy modeling 2.1 Construction of Fuzzy Models 2.1.1 Sector Nonlinearity 2.2 Basic Fuzzy Mathematics for Modeling 2.2.1 Local Approximation in Fuzzy Partition Spaces-2:Takagi-Sugeno fuzzy modeling 2.1 Construction of Fuzzy Models 2.1.1 Sector Nonlinearity 2.2 Basic Fuzzy Mathematics for Modeling 2.2.1 Local Approximation in Fuzzy Partition Spaces
Update
: 2025-02-19
Size
: 770kb
Publisher
:
kiam
[
AI-NN-PR
]
Takagi-Sugeno-fuzzymodel
DL : 0
The fuzzy inference process discussed so far is Mamdani s fuzzy inference method, the most common methodology. This section discusses the so-called Sugeno, or Takagi-Sugeno-Kang, method of fuzzy inference. Introduced in 1985, it is similar to the Mamdani method in many respects. The first two parts of the fuzzy inference process, fuzzifying the inputs and applying the fuzzy operator, are exactly the same. The main difference between Mamdani and Sugeno is that the Sugeno output membership functions are either linear or constant.
Update
: 2025-02-19
Size
: 187kb
Publisher
:
kiam
[
matlab
]
takag_sugeno
DL : 0
Takagi sugeno fuzzy modelling conroller with predefined sinusoidal function
Update
: 2025-02-19
Size
: 318kb
Publisher
:
sms1
[
Software Engineering
]
Temperature-and-humidity-control-in-greenhouses-u
DL : 0
Temperature and humidity control in greenhouses using the Takagi-Sugeno fuzzy model pdf document
Update
: 2025-02-19
Size
: 131kb
Publisher
:
kub
[
matlab
]
kbcs
DL : 0
it is a matlab code for takagi-sugeno modeling
Update
: 2025-02-19
Size
: 187kb
Publisher
:
mmkamani
[
matlab
]
rls_lip_ts
DL : 0
Takagi-Sugeno Fuzzy System by Recursive Least Square online method-Takagi-Sugeno Fuzzy System by Recursive Least Square online method
Update
: 2025-02-19
Size
: 2kb
Publisher
:
Reza
[
matlab
]
bls_lip_ts
DL : 0
training Takagi-Sugeno fuzzy systems using batch least squares
Update
: 2025-02-19
Size
: 1kb
Publisher
:
Reza
[
matlab
]
lm_ts
DL : 0
training Takagi-Sugeno fuzzy systems using the Levenberg-Marquardt method
Update
: 2025-02-19
Size
: 2kb
Publisher
:
Reza
[
Other
]
takagi-sugeno-modeling.pdf
DL : 0
Fuzzy Identification of Systems and Its Applications to Modeling an Control
Update
: 2025-02-19
Size
: 9.75mb
Publisher
:
399
[
Software Engineering
]
Takagi-Sugeno-Fuzzy-Logic-tutorial
DL : 0
Takagi Sugeno Fuzzy Logic Tutorial that can help you learn.
Update
: 2025-02-19
Size
: 665kb
Publisher
:
khalil
[
matlab
]
boilier identification using Takagi Sugeno
DL : 0
This paper describes the application of an identification algorithm clustering type Gustafson-Kessel nonlinear dynamical system. From input-output data the algorithm generates fuzzy models of Takagi-Sugeno. This type of modeling is applied to a non-linear numerical model. The non-linear input / output model of the system is decomposed in several described by membership functions and fuzzy rule-based local linear systems. The results are presented and prospects for future work.
Update
: 2025-02-19
Size
: 149kb
Publisher
:
orques
«
1
2
»
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.