CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - Uniform distribution
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - Uniform distribution - List
[
Mathimatics-Numerical algorithms
]
0-1
DL : 0
//产生0-1之间均匀分布一个随机数// /////////////////////////////////////////////////////////////// //传入参数:r--双精度实型变量指针,指向的单元存放随机数种子值//// //传出参数:p:产生0-1之间均匀分布一个随机数 -/ / 0-1 have a uniform distribution between random numbers / / //////////////////////////////////// /////////////////////////// / / imported parameters : r -- double precision real - variable pointer to the storage unit random number seed / / / / / / out parameters : p : 0-1 produce a uniform distribution between random numbers
Update
: 2008-10-13
Size
: 54.73kb
Publisher
:
公用帐号,请不要修改
[
Other resource
]
我编写的monte carlo随机数发生器
DL : 1
这是我在matlab环境下编写的产生随机数的源程序,包括产生均匀分布和正态分布,参数接口十分灵活。-in Matlab environment prepared by the random numbers generated by the source code, including the Uniform Distribution and normal distribution, parameter interface is very flexible.
Update
: 2008-10-13
Size
: 1.92kb
Publisher
:
存友
[
Other resource
]
para
DL : 0
抛物线法求解 方程的构造方法:给出[0,1]区间上的随机数(服从均匀分布)作为方程的根p*. 设你的班级数为a3,学号的后两位数分别为a2与a1,从而得到你的三次方程 例如:你的31班的12号,则你的方程是21x3+60x2+2x+a0=0的形式. 方程中的系数a0由你得到的根p*来确定. -parabolic equation method Construction Methods : given interval [0,1] on the random number (subject to uniform distribution) as the root equation p *. set up your classes at a3, after learning of the double-digit for a1 and a2, so you get the three equations for example : your 31 classes on the 12th, then your equation is 21x3 60x2 2x a0 = 0 forms. the equation coefficients a0 you get from the root of p * to determine.
Update
: 2008-10-13
Size
: 883byte
Publisher
:
董方
[
Other resource
]
advancenewton
DL : 0
改进的牛顿法求解: 方程的构造方法:给出[0,1]区间上的随机数(服从均匀分布)作为方程的根p*. 设你的班级数为a3,学号的后两位数分别为a2与a1,从而得到你的三次方程 例如:你的31班的12号,则你的方程是21x3+60x2+2x+a0=0的形式. 方程中的系数a0由你得到的根p*来确定. -improve Newton's method : Construction of the equation : given interval [0,1] on the random number (subject to uniform distribution) as the root equation p *. set up your classes at a3, after learning of the double-digit for a1 and a2, so you get the three equations for example : Your 31 classes on the 12th, then your equation is 21x3 60x2 2x a0 = 0 forms. the equation coefficients a0 you get from the root of p * to determine.
Update
: 2008-10-13
Size
: 801byte
Publisher
:
董方
[
Other resource
]
hypot
DL : 0
抛物线法求解 方程的构造方法:给出[0,1]区间上的随机数(服从均匀分布)作为方程的根p*. 设你的班级数为a3,学号的后两位数分别为a2与a1,从而得到你的三次方程 例如:你的31班的12号,则你的方程是21x3+60x2+2x+a0=0的形式. 方程中的系数a0由你得到的根p*来确定. -parabolic equation method Construction Methods : given interval [0,1] on the random number (subject to uniform distribution) as the root equation p *. set up your classes at a3, after learning of the double-digit for a1 and a2, so you get the three equations for example : your 31 classes on the 12th, then your equation is 21x3 60x2 2x a0 = 0 forms. the equation coefficients a0 you get from the root of p * to determine.
Update
: 2008-10-13
Size
: 790byte
Publisher
:
董方
[
Communication
]
tongyuankeshe
DL : 0
信号经过两个独立的信道传输,两个信道的信道复增益分别为 和 。 是独立同分布的复高斯随机变量,实部虚部独立、均值为0,实部虚部的方差都是1。采用某分集技术后输出的信噪比为 ,其中 是常数, 是在 之间均匀分布的随机变量。请就不同的 、 ,用仿真的方法画出 的累积分布函数。-signal after two independent Channel Tunnel, Channel 2 Channel Minute respectively, and gain. Independence is the same complex Gaussian distribution of random variables, is the imaginary part of the Department of independence, mean 0 and the real part of the imaginary part is a variance. Using a diversity of the output signal-to-noise, which is constant, is the uniform distribution between random variables. Please different, and simulation methods paint the cumulative distribution function.
Update
: 2008-10-13
Size
: 1.7kb
Publisher
:
昭
[
Other
]
Uniform Generator
DL : 0
Uniform Generator Computer simulations often require random numbers. One way to generate pseudo-random numbers is via a function of the form where `` " is the modulus operator. Such a function will generate pseudo-random numbers (seed) between 0 and MOD-1. One problem with functions of this form is that they will always generate the same pattern over and over. In order to minimize this effect, selecting the STEP and MOD values carefully can result in a uniform distribution of all values between (and including) 0 and MOD-1. For example, if STEP = 3 and MOD = 5, the function will generate the series of pseudo-random numbers 0, 3, 1, 4, 2 in a repeating cycle. In this example, all of the numbers between and including 0 and MOD-1 will be generated every MOD iterations of the function. Note that by the nature of the function to generate the same seed(x+1) every time seed(x) occurs means that if a function will generate all the numbers between 0 and MOD-1, it will generate pseudo-random numbers uniformly with every MOD iterations. If STEP = 15 and MOD = 20, the function generates the series 0, 15, 10, 5 (or any other repeating series if the initial seed is other than 0). This is a poor selection of STEP and MOD because no initial seed will generate all of the numbers from 0 and MOD-1. Your program will determine if choices of STEP and MOD will generate a uniform distribution of pseudo-random numbers. Input Each line of input will contain a pair of integers for STEP and MOD in that order ( ). Output For each line of input, your program should print the STEP value right- justified in columns 1 through 10, the MOD value right-justified in columns 11 through 20 and either ``Good Choice" or ``Bad Choice" left-justified starting in column 25. The ``Good Choice" message should be printed when the selection of STEP and MOD will generate all the numbers between and including 0 and MOD-1 when MOD numbers are generated. Otherwise, your program should print the message ``Bad Choice". After each output test set, your program should print exactly one blank line. Sample Input 3 5 15 20 63923 99999 Sample Output 3 5 Good Choice 15 20 Bad Choice 63923 99999 Good Choice
Update
: 2009-04-30
Size
: 360byte
Publisher
:
samurai1x4kyo@126.com
[
Data structs
]
均匀分布和高斯分布
DL : 0
均匀分布和高斯分布的C代码-uniform and Gaussian distribution of C code
Update
: 2025-02-19
Size
: 3kb
Publisher
:
int
[
Mathimatics-Numerical algorithms
]
uniformgauss
DL : 0
均匀分布的随机数,并依此产生高斯分布随机数,12和法和Box-Muller法产生高斯分布-uniform distribution of random numbers, and so have a Gaussian distribution of random numbers, 12 and the law and Box-Muller method, Gaussian distribution
Update
: 2025-02-19
Size
: 1kb
Publisher
:
吴俊
[
Other
]
zjf147
DL : 0
用来产生均匀分布或高斯分布的伪随机数 (近似白噪声),它们可具有不同的均值和方差。用REMEZ算法求交错点组。用Cholesky分解求ARMA模型的参数并作谱估计。求MA模型的参数 并估计功率谱。 用最小方差法估计序列 的功率谱。-used to produce uniform or Gaussian distribution of the pseudo-random number (similar to white noise). They may have a different mean and variance. Application of Remez algorithm used for staggered Point Group. Cholesky decomposition used for ARMA model and the parameters estimated for the spectrum. MA for the model parameters and the estimated power spectrum. With MVM sequence of the estimated power spectrum.
Update
: 2025-02-19
Size
: 5kb
Publisher
:
zhoujianfang
[
Other
]
gn
DL : 0
产生符合均匀分布、高斯分布、指数分布、泊松分布,伽玛分布等的随机数-Produced in line with the uniform distribution, Gaussian distribution, exponential distribution, Poisson distribution, gamma distribution of the random number
Update
: 2025-02-19
Size
: 141kb
Publisher
:
wb
[
matlab
]
parzen
DL : 0
parzen窗法,功能是根据样本进行概率密度函数估计。实现了对正态分布概率密度函数和均匀分布双峰概密函数进行估计-Parzen window method, function is based on a sample of the estimated probability density function. The realization of the normal distribution probability density function and uniform distribution Bimodal density function is estimated over
Update
: 2025-02-19
Size
: 3kb
Publisher
:
陈坚
[
matlab
]
guass
DL : 0
基于MATLAB,可以方便地产生随机数,均匀分布和高斯分布等 -Based on MATLAB, can easily generate random numbers, uniform distribution and Gaussian distribution
Update
: 2025-02-19
Size
: 1kb
Publisher
:
shaoyqo
[
matlab
]
LMTS
DL : 0
This toolbox implements the same methods on small dadta sets and imlements a trimming method using a random uniform distribution to quickly process large data sets.-This toolbox implements the same methods on small dadta sets and imlements a trimming method using a random uniform distribution to quickly process large data sets.
Update
: 2025-02-19
Size
: 29kb
Publisher
:
mid
[
matlab
]
matlab-norm-distribution
DL : 0
用MATLAB产生正态分布和均匀分布,采用三种方法,并且进行纵横向对比-Generated using MATLAB normal and uniform distribution, using three methods, and conducted to compare vertical and horizontal
Update
: 2025-02-19
Size
: 58kb
Publisher
:
terminator
[
Other
]
distribution
DL : 0
产生均匀分布、正态分布、瑞利分布、泊松分布这几种分布的随机数,包括实现各部分的子函数和主函数-Produce uniform distribution, normal distribution, Rayleigh distribution, Poisson distribution random number distribution of these types, including the realization of the various parts of the Functions and main function
Update
: 2025-02-19
Size
: 12.14mb
Publisher
:
曾韬
[
Other
]
uniform-distribution
DL : 0
自己编写的产生均匀分布的c语言程序,里面的四个文件分别为不同区间的,请自行验证,可以运行的,结果正确。-I have written to produce a homogeneous distribution of c language program, you can run, the results are correct.
Update
: 2025-02-19
Size
: 2kb
Publisher
:
朱晨
[
matlab
]
Produce-a-variety-of-distribution
DL : 0
1.duishuzhengtai:产生对数正态分布 2.gaussian:产生数据量为n的两个相互独立高斯分布y1、y2 3.junyun:自定义 0-1的均匀分布,n代表数据量,一般要大于1024(蒙特卡罗) 4.ruili:瑞利分布,m是瑞利分布的参数,n代表数据量,n一般要大于1024 5.kaifeng:产生开丰分布,其中m代表开丰分布的自由度,n表示产生的点数量 6.tfenbu:本函数产生自由度为m,数据量为n的t分布。 7.weibuer:a=1时,是指数分布;a=2时,是瑞利分布-1.duishuzhengtai: generating lognormal 2.gaussian: generating a data quantity n of two mutually independent Gaussian distribution Y1, Y2 3.junyun: custom uniform distribution of 0-1, n represents a data amount, generally large in 1024 (Monte Carlo) 4.ruili: Rayleigh distribution, m is a parameter of the Rayleigh distribution, n representative of the amount of data, n is generally greater than 1024 5.kaifeng: generating open abundance distribution, wherein m represents an open-abundance distribution freedom of degrees of freedom, n is the number of points generated 6.tfenbu: This function generates m, the amount of data for n t distribution. 7.weibuer: a = 1, the exponential distribution a = 2, is a Rayleigh distribution
Update
: 2025-02-19
Size
: 3kb
Publisher
:
中士
[
Algorithm
]
Uniform distribution
DL : 0
it is a simulation of wichman hill algortihm which generate a uniform distribution of limoit 0 and 1
Update
: 2025-02-19
Size
: 93kb
Publisher
:
loga1994
[
Other
]
Uniform distribution
DL : 0
this are simple code for a uniform distribution in stochastic and probability area
Update
: 2022-01-13
Size
: 465byte
Publisher
:
0980274411
«
1
2
3
4
5
6
7
8
9
10
...
13
»
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.