CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - adaptive finite element
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - adaptive finite element - List
[
Algorithm
]
possion
DL : 0
介绍利用AFEPack求解自适应有限元的基本使用方法. 其输入参数为利用easymesh对区域进行剖分后的得到的文件.-AFEPack introduce the use of adaptive finite element to solve the basic usage. Its input parameters for the use of easymesh region after the partition of documents.
Update
: 2025-02-19
Size
: 3kb
Publisher
:
崔峰
[
Algorithm
]
E._Stein.Error_Controlled_Adaptive_Finite_Elements
DL : 0
E._Stein.Error_Controlled_Adaptive_Finite_Elements_in_Solid_Mechanics.John_Wiley_and_Sons.2003,自适应有限元分析,包括误差估计和自适应-E._Stein.Error_Controlled_Adaptive_Finite_Elements_in_Solid_Mechanics.John_Wiley_and_Sons.2003, adaptive finite element analysis, including error estimates and adaptive
Update
: 2025-02-19
Size
: 3.69mb
Publisher
:
zhangzheng
[
matlab
]
AFEM@matlab
DL : 0
EM@matlab是一个有限元工具包,适用于静力和偏微分方程的演变-AFEM@matlab is a MATLAB package of adaptive finite element methods (AFEMs) for stationary and evolution partial differential equations in two spatial dimensions
Update
: 2025-02-19
Size
: 267kb
Publisher
:
晁忠贵
[
Algorithm
]
adapt
DL : 0
adaptive finite element method for pde
Update
: 2025-02-19
Size
: 9kb
Publisher
:
zhang xiaoping
[
matlab
]
wzj5
DL : 0
线性和非线性适应有限元分析法的matlab工具包。-Linear and nonlinear adaptive finite element analysis method matlab toolkit.
Update
: 2025-02-19
Size
: 5kb
Publisher
:
yueguang
[
Algorithm
]
adapt
DL : 0
采用自适应有限元求解1维问题 Fortran 程序源代码- ADAPT solves a 1D problem using an adaptive finite element method. Fortran source code
Update
: 2025-02-19
Size
: 9kb
Publisher
:
mybiandou
[
Other systems
]
HADAPT_man
DL : 0
2d adaptive finite element fortran code for transient heat transfer analysis (inlcudes a 2D unstructured mesh generator program)
Update
: 2025-02-19
Size
: 217kb
Publisher
:
Asif
[
Algorithm
]
libmesh-0.7.0.3.tar
DL : 0
处理六面体,四面体,四边形和三角网格。拉格朗日,层次,以及单项有限元。接口PETSc解,自适应网格加密,和极端portablility -Handling hexahedral, tetrahedral, quadrilateral and triangular meshes. Lagrange, level, and the individual finite element. PETSc solution interfaces, adaptive mesh refinement, and extreme portablility
Update
: 2025-02-19
Size
: 4.93mb
Publisher
:
suese
[
Grid Computing
]
adaptive-finite-element-methods
DL : 0
自适应网格有限元计算方法,matlab编写,计算效率高-Adaptive grid finite element method, matlab write, calculate the efficiency
Update
: 2025-02-19
Size
: 284kb
Publisher
:
Mini
[
matlab
]
adaptivefem1
DL : 0
自适应有限元子程序,用来求解不同边界条件(第一类和第二类)的拉普拉斯方程-Adaptive finite element subroutine, used to solve different boundary conditions (first and second class) the Laplace equation
Update
: 2025-02-19
Size
: 6kb
Publisher
:
icer
[
matlab
]
adaptive2
DL : 0
自适应有限元求第一类和第二类边界条件的拉普拉斯方程子程序-Adaptive finite element seeking first and second boundary conditions Laplace Fang Chengzi program
Update
: 2025-02-19
Size
: 5kb
Publisher
:
icer
[
matlab
]
adaptive3
DL : 0
自适应有限元求解第一类和第二类边界条件的拉普拉斯方程的相关子程序-Adaptive finite element solution of the first and second boundary conditions related to the Laplace equation subroutine
Update
: 2025-02-19
Size
: 3kb
Publisher
:
icer
[
matlab
]
adaptive4
DL : 0
自适应有限元求解第一类和第二类边界条件的拉普拉斯方程的相关子程序-Adaptive finite element solution of the first and second boundary conditions related to the Laplace equation subroutine
Update
: 2025-02-19
Size
: 2kb
Publisher
:
icer
[
matlab
]
epoxilaminate4N
DL : 2
复合材料的优化,内容里边有很好的描述以及很多的计算实例,适合进阶学习-Objective of this Matlab s program was researched optimization analysis of laminated composite plates for determined the ultimate strength and stress effects of plate s under the regular and uniform out-loads. Therefore, generally Reissner s flat and thick shell finite element model (4Node-20Dof) was developed with first-order shear deformation theory (FSDT). Kirchhoff s classical laminate plate theory yields in adequate results for thick plates (a/th<20). This classical laminated plate (CLPT or CPT), was one of the first developed by Reissner with shear deformation theory. Afterwards, Mindlin was utulizated this shear deformation theory to accommodate rotary of inertia terms on per unit freedom. If this plate system s be very thick (a/th<10) than it is fail to shear deformation-motion and it s condition of adaptive shear stress on plate s top and bottom surface. While this conditions was produced on plate s segment when requered the shear correction factor of shear locking eff
Update
: 2025-02-19
Size
: 837kb
Publisher
:
陈浩
[
DirextX
]
IAG
DL : 0
3D direct current resistivity modeling with unstructured mesh by adaptive finite-element method
Update
: 2025-02-19
Size
: 482kb
Publisher
:
liping
[
Algorithm
]
AFEPack-snapshot.tar
DL : 0
AFEPack-snapshot,自适应有限元程序-AFEPack-snapshot, adaptive finite element program
Update
: 2025-02-19
Size
: 1.14mb
Publisher
:
万一
[
Algorithm
]
AFEPack-snapshot.tar
DL : 0
北京大学老师编写的自适应有限元开源软件包-Adaptive finite element method to solve partial differential equations
Update
: 2025-02-19
Size
: 1.14mb
Publisher
:
YHen
[
Algorithm
]
Adaptive
DL : 0
一维自适应有限元算法,根据理论推导的后验误差估计,更新步长,不断的迭代,特别适用于有边界成或者间断解的情形,适合数值计算的初接触者-One-dimensional adaptive finite element algorithm, based on theoretical derivation of a posteriori error estimation update step, continuous iteration, especially for border into or situation Discontinuous Solutions, the early numerical calculation contacts
Update
: 2025-02-19
Size
: 2kb
Publisher
:
shs3701001
[
matlab
]
Adaptive-finite-element-method
DL : 0
matlab 自适应有限元方法,主要为二维椭圆型方程-Adaptive finite element method for two-dimensional elliptic equations
Update
: 2025-02-19
Size
: 20kb
Publisher
:
邢冬冬
[
matlab
]
AFEM@matlab
DL : 0
AFEM@matlab is a MATLAB package of adaptive finite element methods (AFEMs) for stationary and evolution partial differential equations in two spatial dimensions. It contains robust, efficient, and easy-to-follow codes for the main building blocks of adaptive finite element methods.
Update
: 2025-02-19
Size
: 276kb
Publisher
:
reeza
«
1
2
»
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.