Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - bagging
Search - bagging - List
Description: FASBIR(Filtered Attribute Subspace based Bagging with Injected Randomness) is a variant of Bagging algorithm, whose purpose is to improve accuracy of local learners, such as kNN, through multi-model perturbing ensemble. Reference: Z.-H. Zhou and Y. Yu. Ensembling local learners through multimodal perturbation. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 2005, vol.35, no.4, pp.725-735. -Description: FASBIR(Filtered Attribute Subspace based Bagging with Injected Randomness) is a variant of Bagging algorithm, whose purpose is to improve accuracy of local learners, such as kNN, through multi-model perturbing ensemble. Reference: Z.-H. Zhou and Y. Yu. Ensembling local learners through multimodal perturbation. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 2005, vol.35, no.4, pp.725-735
Update : 2008-10-13 Size : 101.35kb Publisher : 修宇

DL : 0
machine learning, accuracy estimation, cross-validation, bootstrap, ID3, decision trees, decision graphs, naive-bayes, decision tables, majority, induction algorithms, classifiers, categorizers, general logic diagrams, instance-based algorithms, discretization, lazy learning, bagging, MineSet. -machine learning, accuracy estimation, cross-validation, bootstrap, ID3, decision trees, decision graphs, naive - bayes, decision tables, the majority, induction algorithms, classifiers, categorizers, general logic diagrams. instance-based algorithms, discretization. lazy learning, bagging, MineSet.
Update : 2008-10-13 Size : 3.01mb Publisher : infinite8

一个完整的制袋机控制系统,包显示程序,步进电机驱动程序.-a complete bagging machine control system, including the display program, stepping motor driver.
Update : 2008-10-13 Size : 13.3kb Publisher : 黄华

分类算法,采用bagging方法来选择训练集,《机器学习及java实现》里面的
Update : 2008-10-13 Size : 3.4kb Publisher : 王新

机器学习中数据集的冗余特征会影响学习器的泛化能力,一些流行方法如支持向量机和集成学习也难免于 此.研究了利用主成份分析进行特征变换对Bagging集成学习算法的影响,提出一种称为PCA—Bagging的算法,并与 其它算法比如单个支持向量机、支持向量机Bagging集成、带有特征变换的单个支持向量机等进行了性能比较.在 多个UCI标准数据集上的实验表明PCA—Bagging算法具有更好的性能,这说明即使是泛化能力很强的集成学习方 法其学习的数据也需要进行适当的特征变换
Update : 2011-04-26 Size : 223.3kb Publisher : zero_m

DL : 0
machine learning, accuracy estimation, cross-validation, bootstrap, ID3, decision trees, decision graphs, naive-bayes, decision tables, majority, induction algorithms, classifiers, categorizers, general logic diagrams, instance-based algorithms, discretization, lazy learning, bagging, MineSet. -machine learning, accuracy estimation, cross-validation, bootstrap, ID3, decision trees, decision graphs, naive- bayes, decision tables, the majority, induction algorithms, classifiers, categorizers, general logic diagrams. instance-based algorithms, discretization. lazy learning, bagging, MineSet.
Update : 2025-02-17 Size : 3.01mb Publisher : infinite8

DL : 0
一个完整的制袋机控制系统,包显示程序,步进电机驱动程序.-a complete bagging machine control system, including the display program, stepping motor driver.
Update : 2025-02-17 Size : 13kb Publisher : 黄华

是模式识别课件,Bagging & Boosting -Is a pattern recognition software, Bagging
Update : 2025-02-17 Size : 121kb Publisher : 许华荣

分类算法,采用bagging方法来选择训练集,《机器学习及java实现》里面的-Classification algorithm, using bagging method to select the training set, the realization of machine learning and java inside
Update : 2025-02-17 Size : 3kb Publisher : 王新

模式识别bagging boosting c4.5算法-Bagging boosting c4.5 algorithm for pattern recognition
Update : 2025-02-17 Size : 79kb Publisher : john

DL : 0
一. 随机现象的模拟 例: 超市出口有若干个收款台,两项服务:收款、装袋。顾客的到达的时间间隔是随机的; 因顾客购买的货物量不同,所以服务时间的长短也是随机的。 可以利用计算机产生服从一定的规律(概率分布)的(伪)随机数,用随机数确定时间间隔和服 务时间-1. Random phenomena simulation cases: There are a number of export supermarket cashier, the two services: collection, bagging. Customer' s arrival time interval is random due to the amount of freight customers to buy different, length of service is also random. Can make use of computer-generated subject to certain rules (probability distribution) of the (pseudo) random numbers, using a random number to determine the time interval and service time
Update : 2025-02-17 Size : 167kb Publisher : 明远

该源代码主要是利用bagging,adboosting等集成学习的方法进行图像融合处理,效果甚好!-The main source is the use of bagging, adboosting ensemble learning methods such as image fusion, the effect is very good!
Update : 2025-02-17 Size : 26kb Publisher : 孟子清

boosting算法和bagging算法综述-boosting algorithm and bagging Algorithms
Update : 2025-02-17 Size : 81kb Publisher : 朱建清

主要是给新手熟悉bagging和boosting算法在虹膜中的运用。-bagging and boosting algorithm in the application of the iris.
Update : 2025-02-17 Size : 4kb Publisher : 刘茂

Breiman的bagging算法,是bootstrap aggregating的缩写,是最早的Ensemble算法之一,它也是最直接容易实现,又有着另人惊讶的好效果的算法之一。-Breiman’s bagging, short for bootstrap aggregating, is one of the earliest ensemble based algorithms.
Update : 2025-02-17 Size : 22kb Publisher : wujun

DL : 0
关于机器学习的文章,包括 hadoop 随即森林 ,bagging 和adaboost 的介绍-bagging and Adaboost
Update : 2025-02-17 Size : 4.99mb Publisher : liuzi

bagging算法的R语言实现,完整代码,运行速度较快-bagging algorithm R language, the complete code to run faster
Update : 2025-02-17 Size : 1kb Publisher : 一蓑烟云

利用matlab实现NLDA人脸识别算法,更详细的random sampling LDA, bagging NLDA和整合LDA算子利用majority vote 和sum rule的matlab 代码,人脸库使用ORL库或者XM2VTS库,地址:http://shop.zbj.com/14563255/sid-1213623.html- matlab codes for NLDA face detection, the face s are ORL. More details about random sampling LDA, bagging NLDA, Integrating Random Subspace and Bagging for LDA Based Face Recognition using majority vote and sum rule please refer tohttp://shop.zbj.com/14563255/sid-1213623.html
Update : 2025-02-17 Size : 4.68mb Publisher : July科技

bagging 工具箱,随机森林工具箱,使用MATLAB2014b 环境测试(Bagging toolbox, random forest toolbox, using the MATLAB2014b test environment)
Update : 2025-02-17 Size : 399kb Publisher : 迷路你就向前走

基于matlab软件的Ga-bagging-svm程序,包含算例data,编写规范,非常好用(Ga-bagging-svm program based on MATLAB software, including example data, compiling specifications, very useful)
Update : 2025-02-17 Size : 820kb Publisher : wangzhifengchd
« 12 3 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.