CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - boxcount matlab
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - boxcount matlab - List
[
Other resource
]
boxcount
DL : 0
一個MATLAB範例,可以用來計算分形盒維度
Update
: 2008-10-13
Size
: 1.56mb
Publisher
:
黃
[
Other resource
]
boxcount
DL : 0
matlab编写 可以求分形维数,简单方便
Update
: 2008-10-13
Size
: 1.6mb
Publisher
:
ty
[
Special Effects
]
boxcount
DL : 1
Fractal dimension using the box-counting method for 1D, 2D and 3D sets
Update
: 2025-02-17
Size
: 1.55mb
Publisher
:
林海
[
Fractal program
]
Matlab
DL : 0
Update
: 2025-02-17
Size
: 2kb
Publisher
:
王胜斌
[
matlab
]
boxcount
DL : 0
一個MATLAB範例,可以用來計算分形盒維度-Examples of a MATLAB can be used to calculate the fractal box dimension
Update
: 2025-02-17
Size
: 1.56mb
Publisher
:
黃
[
matlab
]
boxcount
DL : 0
matlab编写 可以求分形维数,简单方便-matlab can prepare for the fractal dimension, is simple and convenient
Update
: 2025-02-17
Size
: 1.6mb
Publisher
:
ty
[
File Format
]
boxcount-matlab
DL : 0
计算分形维数的计盒算法,用于边长相等的图像的算法-Calculation of fractal dimension of the box algorithms for the edge of the image appearance, such as the algorithm
Update
: 2025-02-17
Size
: 1kb
Publisher
:
顾斌
[
matlab
]
boxcount
DL : 0
很不错的关于计算分形维的matlab代码-Very good on the calculation of the fractal dimension of the matlab code
Update
: 2025-02-17
Size
: 1.6mb
Publisher
:
wewe
[
Fractal program
]
boxcount
DL : 0
用于计算图像的计盒维数的小程序,自己的课题应用-Used to calculate the box dimension of the program, the subject of its own application
Update
: 2025-02-17
Size
: 2kb
Publisher
:
do
[
Algorithm
]
boxcount
DL : 0
A set (e.g. an image) is called "fractal" if it displays self-similarity: it can be split into parts, each of which is (at least approximately) a reduced-size copy of the whole. A possible characterisation of a fractal set is provided by the "box-counting" method: The number N of boxes of size R needed to cover a fractal set follows a power-law, N = N0 * R^(-DF), with DF<=D (D is the dimension of the space, usually D=1, 2, 3). DF is known as the Minkowski-Bouligand dimension, or Kolmogorov capacity, or Kolmogorov dimension, or simply box-counting dimension.
Update
: 2025-02-17
Size
: 1.6mb
Publisher
:
piri_small
[
matlab
]
boxcount
DL : 0
用matlab程序编写,计算分形图像的计盒维数。-Programming using matlab to calculate the fractal box dimension image.
Update
: 2025-02-17
Size
: 1kb
Publisher
:
陈福美
[
GDI-Bitmap
]
boxcount
DL : 0
计算图片2维分形维数的Matlab程序,很好用的,可以做科研-Calculate the picture 2-D fractal dimension of the Matlab program, easy to use, you can do research
Update
: 2025-02-17
Size
: 3kb
Publisher
:
韩超
[
matlab
]
boxcountdim
DL : 0
matlab program for calculating fractal dimension using boxcount algorithm
Update
: 2025-02-17
Size
: 7kb
Publisher
:
totti
[
MiddleWare
]
boxcount
DL : 0
分形计算的程序 盒子算法 非常有用的算法 大家可以试试看 可以的就用吧 -Box-counting dimension for the matlab procedure, can calculate the dimensions, using the box dimension method
Update
: 2025-02-17
Size
: 2kb
Publisher
:
kou
[
Other
]
boxcount
DL : 0
此函数可以计算一维数组的分形维数,并且已经在matlab环境中调试成功-This function can calculate the fractal dimension of a one-dimensional array , and has been successful debugging environment in matlab
Update
: 2025-02-17
Size
: 2kb
Publisher
:
陈杰
[
matlab
]
boxcount
DL : 0
matlab代码实现分形维数计算1,2,3维图形的盒维数-The following examples illustrate how to use the Matlab package boxcount to compute the fractal dimension of 1D, 2D or 3D sets, using the box-counting method.
Update
: 2025-02-17
Size
: 1.6mb
Publisher
:
谭康豪
[
matlab
]
boxcount
DL : 0
matlab program to calculate fractals dim
Update
: 2025-02-17
Size
: 2kb
Publisher
:
cenas
[
Other
]
boxcount-2
DL : 0
matlab code for boxc-ounting method and plot
Update
: 2025-02-17
Size
: 1.57mb
Publisher
:
formatlabcode
[
matlab
]
boxcount
DL : 0
利用数盒子法计算离散数据序列的分数维程序,采用matlab编程(We use the number box method to calculate the fractal dimension program of discrete data sequence, and use matlab programming.)
Update
: 2025-02-17
Size
: 1.6mb
Publisher
:
maoxx
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.