Location:
Search - buffon
Search list
Description: Buffon s Needle. A simulation of ant scout behaviour in assessing the size of a potential nest site.
Platform: |
Size: 8921 |
Author: 增平 |
Hits:
Description: Buffon s Needle. A simulation of ant scout behaviour in assessing the size of a potential nest site.
Platform: |
Size: 9216 |
Author: 增平 |
Hits:
Description: 一个演示buffon针计算π的小程序
不是自己写的,在高级算法参考的一个实验,和大家共享一下。-Buffon needle a Demo π small calculation process is not wrote it myself, in reference to high-level algorithm of an experiment and share what.
Platform: |
Size: 158720 |
Author: phil |
Hits:
Description: 布冯投针实验的mathematica程序可视化,对使用计算机啊模拟以及应用蒙特卡洛法的例子-Buffon needle experiment for mathematica program visualization, ah on the use of computer simulation and application examples of Monte Carlo method
Platform: |
Size: 12288 |
Author: nick |
Hits:
Description: Estimate Pi value using Monte Carlo Method and Buffon Needle Technique
Platform: |
Size: 2048 |
Author: Umang |
Hits:
Description: C语言实现模拟布丰投针实验,并通过概率论理论计算出实验推得的圆周率值-C language for simulation of Buffon needle experiments, and probability theory to calculate the experimental push the value of pi
Platform: |
Size: 48128 |
Author: 王明 |
Hits:
Description: 现在有很多方法算PI的值,这是通过BUFFON针算出PI的值-compute PI by buffon
Platform: |
Size: 1024 |
Author: dxmgood |
Hits:
Description: 利用matlab生成的随机数做蒲丰(buffon)投针问题.-Is Pu Feng using the matlab production s random number (buffon) to throw the needle question.
Platform: |
Size: 7168 |
Author: 李二科 |
Hits:
Description: 模拟Buffon随机投针计算圆周率的Mathematica 源程序-Simulation of Buffon needle calculate pi were cast in the Mathematica source code
Platform: |
Size: 1024 |
Author: lx |
Hits:
Description: 蒲丰投针的Matlab源程序,返回的结果是Pi的近似。-buffoncalc(m) performs m iterations of Buffon s needle experiment
and returns the thus calculated approximation of \pi.
Platform: |
Size: 2048 |
Author: 苏芳 |
Hits:
Description: matlab布丰投针问题的matlab代码蒙特卡洛模拟-matlab buffon
Platform: |
Size: 6144 |
Author: wyp |
Hits:
Description: 利用buffon投针实验模拟pi值。提高投针次数可以逐步逼近精确的pi值。-Use of the buffon cast needle experiment to simulate the value of pi. Increase the number of cast-pin can be gradually approaching the exact value of pi.
Platform: |
Size: 1024 |
Author: yming |
Hits:
Description: buffon估计π算法,这是算法分析与设计的内容,其中不含有有π-buffon estimated π algorithm, algorithm analysis and design, which does not contain have π
Platform: |
Size: 179200 |
Author: jabinwang |
Hits:
Description: BUFFON投针实验的资料包及各种程序的说明及一个简单的应用-Information packs and a variety of program instructions and a simple application of the needle experiment BUFFON vote
Platform: |
Size: 160768 |
Author: gjygjy |
Hits:
Description: mathematica里面实现仿真的蒲丰投针实验-buffon experiment on mathematica
Platform: |
Size: 1024 |
Author: xpc |
Hits:
Description: 蒲丰投针来求解圆周率,这是通过简单的概率模型来求解圆周率较为有效的方法-The Buffon needle cast Solving pi pi more effective method to solve this is through a simple probabilistic model
Platform: |
Size: 51200 |
Author: maxwellddd |
Hits:
Description: 蒲丰投针求π问题的几种解法,可作为概率论的大作业-Buffon needle cast seeking π problem several solutions can be used as probability theory
Platform: |
Size: 4096 |
Author: 丁元 |
Hits:
Description: 用matlab做的蒲丰投针动态仿真实验。用了GUI。投针预测Pi的值。-Using matlab to do Buffon needle cast of dynamic simulation. With a GUI. Needle cast predictive value of Pi.
Platform: |
Size: 1024 |
Author: 唐知行 |
Hits:
Description: Buffon投针实验18世纪,布丰提出以下问题:设我们有一个以平行且等距木纹铺成的地板(如图),现在随意抛一支长度比木纹之间距离小的针,求针和其中一条木纹相交的概率。并以此概率,布丰提出的一种计算圆周率的方法——随机投针法。这就是蒲丰投针问题(buffonIn the 18th century, Buffon proposed the following question: Let us have a parallel and equidistant wood paved the floor (pictured), now free to throw a length of wood than the distance between the small needle, and a needle The probability of grain intersecting. And with this probability, Buffon proposed a method of calculating the pi - random acupuncture method. This is the problem of Po Feng investment)
Platform: |
Size: 2048 |
Author: tataka
|
Hits:
Description: 利用matlab来实现“buffon”投针实验:关于pi的数值计算。(It is an example of Monte carlo.It is a very good numerical calculation of pi.)
Platform: |
Size: 10240 |
Author: liyuanding
|
Hits: