Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - catmull
Search - catmull - List
基于catmull-clark和loop细分的精确细分曲面曲面的法向控制程序-on-clark loop and sub-sub-surface precision of surfaces to control procedures
Update : 2008-10-13 Size : 1.57mb Publisher : 何钢

Implementation of subdivision: Implement the Catmull-Clark subdivision scheme. Your program should take a single argument on the command line, a mesh to subdivide.-Implementation of subdivision : Implement the Catmull-Clark subdivision sche me. Your program should take a single argument o n the command line, a mesh to subdivide.
Update : 2008-10-13 Size : 118.69kb Publisher : 李萍

DL : 0
catmull-rom的源代码 catmull-rom的源代码 -catmull-rom source code c atmul l-rom source code catmull -rom source code c atmull-rom source code
Update : 2008-10-13 Size : 264.71kb Publisher : nicole

catmull-clark与butterfly的实现源代码。在VC6.0下及OPENGL中实现
Update : 2008-10-13 Size : 70.84kb Publisher : 李娜

基于catmull-clark和loop细分的精确细分曲面曲面的法向控制程序-on-clark loop and sub-sub-surface precision of surfaces to control procedures
Update : 2025-02-19 Size : 1.57mb Publisher : 何钢

Implementation of subdivision: Implement the Catmull-Clark subdivision scheme. Your program should take a single argument on the command line, a mesh to subdivide.-Implementation of subdivision : Implement the Catmull-Clark subdivision sche me. Your program should take a single argument o n the command line, a mesh to subdivide.
Update : 2025-02-19 Size : 118kb Publisher : 李萍

catmullClark细分算法代码,直接运行的结果为一个实例的细分结果-catmullClark subdivision algorithm code directly to the results of the operation of an example of the breakdown of the results
Update : 2025-02-19 Size : 41kb Publisher : 李甜甜

DL : 0
catmull-rom的源代码 catmull-rom的源代码 -catmull-rom source code c atmul l-rom source code catmull-rom source code c atmull-rom source code
Update : 2025-02-19 Size : 264kb Publisher :

catmull-clark与butterfly的实现源代码。在VC6.0下及OPENGL中实现-catmull-clark and butterfly realization of the source code. In VC6.0 and OPENGL achieve under
Update : 2025-02-19 Size : 89kb Publisher :

作者:Henning Biermann 可以解析VRML文件,将数据分类存放在一个树结构中后在计算机上显示成三维图形,并应用Loop和Catmull—Clark的细分方法,对图形细分,使其更接近真实图形。-Author:Henning Biermann parse VRML file,restore the data in a tree and display them in the computor,subdivide the surface by Loop and Catmull-Clark
Update : 2025-02-19 Size : 15.92mb Publisher : 王丽珠

N-Dimensional Cardinal(Catmull-Rom) Spline Interpolation
Update : 2025-02-19 Size : 14kb Publisher : 肖才子

细分曲面的参数求值 Catmull-Clark细分曲面与Loop细分曲面-Subdivision surface parameters evaluated subdivision surface Catmull-Clark Subdivision Surfaces with Loop
Update : 2025-02-19 Size : 1.59mb Publisher : 李斌

Doo-sabin与catmull-clark细分曲面源程序,对于Doo-sabin细分曲面,用户可以根据选项选择显示纹理图还是线条图,可以多次细分。catmull-clark为线条图;这两个程序是分开写的,在一个文件夹内。-Doo-sabin catmull-clark subdivision surfaces with the source code for the Doo-sabin subdivision surface, the user can choose depending on options or line graph shows the texture map can be repeatedly broken down. catmull-clark for the line graph these two programs are written separately in a folder.
Update : 2025-02-19 Size : 8.74mb Publisher : bends

Introduction to mathematical splines Bezier curves Continuity conditions (C0, C1, C2, G1, G2) Creating continuous splines C2-interpolating splines B-splines Catmull-Rom splines
Update : 2025-02-19 Size : 137kb Publisher : Faraz

CSHARP 编写的XNA游戏程序,采用VS2010变成,需安装XNA4.0-CSHARP preparation of the XNA games, using VS2010 to become, to be installed XNA4.0
Update : 2025-02-19 Size : 727kb Publisher : ybbtmvtk

游戏中由于自动控制相机路径的演示程序-Many people are impressed by realistic camera animations in games or multimedia demos. The math behind what is commonly called camera interpolation is actually pretty simple. In this article, I will focus on a simple algorithm that uses a particular class of spline curves called Overhauser or Catmull-Rom splines, and I will show how and why they are superior to other existing more or less similar approaches.
Update : 2025-02-19 Size : 12kb Publisher : 罗健欣

Bspline曲线生成程序Catmull-Rom Spline, Lagrange, Natural Cubic Spline, and NURBS方法获得B样条曲线-Implementation of various mathematical curves that define themselves over a set of control points. The API is written in Java. The curves supported are: Bezier, B-Spline, Cardinal Spline,
Update : 2025-02-19 Size : 470kb Publisher : zhuwh

DL : 0
Catmull在反走样中的应用的论文,题目是《Catmull算法中反走样技术的改进》-Catmull anti- aliasing in the paper , entitled " anti- aliasing technology, improvement of Catmull algorithm
Update : 2025-02-19 Size : 1.1mb Publisher : Zoe

设P(m,n)是初始控制点列,即原曲面的点(m行n列)。Q(m,n)是一次细分后得到的曲面的控制节点。 此函数采用Catmull-Clark细分曲面算法,对双三次B样条曲面细分,即m=n=4。 利用我们在13章第四节学过的知识,有公式MQM =SMPM S ,其中M,S可由课件知 构造初始控制点列(p1,p2),其中p1是P的行坐标,p2是P的列坐标 -Let P (m, n) is the initial control point of the column, i.e. the original surface of the point (m rows n columns). Q (m, n) is the control node of the surfaces one after subdivision. This function takes a Catmull-Clark subdivision surface algorithm, the bi-cubic B-spline surface subdivision, ie m = n = 4. Using knowledge in Chapter 13, section IV, formula MQM, ' = SMPM' S' , wherein M, S by courseware known structure the initial control point of the column (p1, p2), where p1 is the row coordinate of P, p2 column coordinates of P
Update : 2025-02-19 Size : 9kb Publisher : 户蕾蕾

MATLAB编写的catmullclark细分曲面算法的实例-Examples of MATLAB prepared catmull clark subdivision surfaces algorithms
Update : 2025-02-19 Size : 80kb Publisher : 多串君
« 12 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.