Welcome![Sign In][Sign Up]
Location:
Search - clustering matl

Search list

[matlabclustering

Description: 動態聚類k-means演算 將輸入在程式中的數據資料 給予適當的分群-dynamic clustering k-means figure:proper hiving off of input datum in programme
Platform: | Size: 829440 | Author: 傅國欽 | Hits:

[matlabFCM[matlab]

Description: FCM,模糊C均值聚类的MATLAB实现[matlab]-FCM, Fuzzy C- Means clustering MATLAB [Matlab]
Platform: | Size: 6144 | Author: shi-tou | Hits:

[matlabcmeans

Description: 实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。-achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n objects assigned K to 000 category, making such objects within the similarity between the largest category of the similarity between the smallest.
Platform: | Size: 1024 | Author: yili | Hits:

[matlabfuzzy

Description: 熟悉三角形模糊数、中心及隶属函数表达式的概念。了解特征映射算法及统计中的 统计量的概念。利用聚类迭代算法建立 个三角形形式的隶属函数 -Familiar with the triangular fuzzy number, membership function centers and the concept of expression. Understand the feature mapping algorithm and statistics of the concept of statistics. Iterative use of clustering algorithms to establish a triangular form of membership function
Platform: | Size: 1024 | Author: David | Hits:

[matlabNetCreate

Description: 现有的几个网络拓扑随机发生器,其实很难生成理想的网络拓扑结构,其主要原因在于很难控制节点的疏密和间距。我们提出来的这个改进算法,在随机抛撒节点的时候使用了K均值聚类,由本算法作为网络拓扑发生器,网络节点分布均匀且疏密得当,边的分布也比较均衡-The few existing random network topology generator, is in fact very difficult to generate the desired network topology, the main reason it is difficult to control the node density and spacing. We put forward the improved algorithm, throw in random nodes when using the K-means clustering, by the algorithm as a network topology generator, network nodes and spacing evenly distributed properly, the edge of a more balanced distribution of
Platform: | Size: 2048 | Author: ben | Hits:

[matlabknn

Description: knn 方法为k均值聚类用于数据点的分类-KNN method for k-means clustering for the classification of data points
Platform: | Size: 27648 | Author: | Hits:

[AI-NN-PRisodata

Description:
Platform: | Size: 5120 | Author: lealvin | Hits:

[matlabDBSCAN

Description: 采用matlab语言编写的,用于聚类相关方面的dbscan算法源程序,希望对大家有帮助-using the matlab language for the relevant aspects of clustering algorithm source dbscan hope that we can raise! !
Platform: | Size: 2048 | Author: ferrari | Hits:

[matlabCluster

Description: 使用分解聚类算法在IRIS数据上进行聚类分析,IRIS数据是由鸢尾属植物的三种单独的花的测量结果所组成,模式类别数为3,特征维数是4,每类各有50个模式样本,总共有150个样本。-The use of decomposition in the IRIS data clustering algorithm on the cluster analysis, IRIS data are from the iris flower three separate components of the measurement results, models for category 3, 4 are characteristic dimension, of each type of each 50 model samples, a total of 150 samples.
Platform: | Size: 3072 | Author: liz | Hits:

[matlabisodata

Description: isodata image clustering matlab code
Platform: | Size: 5120 | Author: jagdeep | Hits:

[matlabkmean

Description: 一个刚编出来的K—means 聚类算法的matlab源代码 适合多维数据-Just made out of a K-means clustering algorithm matlab source code for multi-dimensional data
Platform: | Size: 1024 | Author: 吴立锋 | Hits:

[matlabdataset

Description: matlab 代码 k-means 算法 实现2-D数据的聚类-matlab code for k-means algorithm is 2-D data clustering
Platform: | Size: 2048 | Author: 王新民 | Hits:

[matlabdbscan

Description: 经典浓度聚类算法DBSCAN的MATLAB实现,简单易懂,可以运行-Classical clustering algorithm DBSCAN concentration of MATLAB implementation, easy to understand, you can run
Platform: | Size: 2048 | Author: Liang Ge | Hits:

[Speech/Voice recognition/combineSpeech Processing Analysis - MATLAB

Description: The number of states in GMM as the generative model of the frames is obtained using k-means algorithm. This also helps to initialize the mean vector and the covariance matrix of the individual state of the GMM. The training LPC frames collected from three speech segments are subjected to PCA for dimensionality reduction and are subjected to k-means algorithm. The total number of frames is equal to the total number of vectors that are subjected to k-means clustering.
Platform: | Size: 728064 | Author: Khan17 | Hits:

CodeBus www.codebus.net