Description: 用C++中的MFC编程实现正轴等角割圆柱投影,实现以下要求:
取克拉索夫斯基椭球
(1)制图区域: Bs=0°, BN=25°
LE=105°, LE=125°
(2)经纬线间隔: ΔB=ΔL=5°
(3)制图比例尺: 1:M0=1:1000 000
(4)标准纬线: Bk=±15°
计算经纬网格点的 x, y,m,n, p
-With C++ Of MFC programming is cutting Conformal cylindrical projection axis to achieve the following requirements: check克拉索Malinowski ellipsoid (1) mapping the region: Bs = 0 °, BN = 25 ° LE = 105 °, LE = 125 ° (2) latitude and longitude line spacing: ΔB = ΔL = 5 ° (3) Drawing scale: 1: M0 = 1:1000 000 (4) the standard parallels: Bk = ± 15 ° latitude and longitude grid computing point x , y, m, n, p Platform: |
Size: 40960 |
Author:张建 |
Hits:
Description: Modeling of Simultaneous Switching Noise in On-Chip and Package Power Distribution Networks Using Conformal Mapping, Finite Di® erence Time Domain and Cavity Resonator Methods Platform: |
Size: 4166656 |
Author:omid |
Hits:
Description: Analytical expressions for the vector magnetic fields and Fourier transforms associated with thin film heads are presented. These results are derived from accurate, approximate expressions for the surface field of an asymmetric thin film head determined from conformal mapping solutions. A 2D Green s function is integrated to yield exact analytic expressions for the fields, which are of no more complexity than the Karlqvist field approximations. In spite of their simplicity, these expressions accurately represent the fields at all corners, both at the gap and at the pole edges. Platform: |
Size: 7168 |
Author:shengbin |
Hits:
Description: 一组用于计算不同参考椭球和不同投影之间的坐标变换的函数,包括以下工具:
- 从笛卡尔到地理坐标的
转换,以及 从地理坐标到横向墨西哥映射的反向
转换或者朗伯保形锥形映射以及 从地理到可以处理不规则区域和极点映射的UTM和背面
- 3D / 2D / 1D相似变换(Helmert变换)
- 确定3D / 2D / 1D-Helmert变换的参数
- 执行Helmert变换 后应用残差校正
- 读取和使用NTV2转换参数
- ITRS和ETRS帧之间的3D转换
- 3D / 2D仿射变换及其参数确定
- 3D / 2D到2D投影变换及其参数确定
- Molodensky变换(A set of functions to calculate coordinate transformations between different reference ellipsoids and different projections, including tools on:
- transformation from cartesian to geographic coordinates and back
- transformation from geographic coordinates to transverse mercator mapping or lambert conformal conical mapping and back
- transformation from geographic to UTM and back which can handle irregular zones and pole mapping
- 3D/2D/1D similarity transformation (Helmert transformation)
- determination of the parameters of a 3D/2D/1D-Helmert transformation
- applying residual corrections after performing a helmert transformation
- reading and using NTv2 transformation parameters
- 3D transformation between ITRS and ETRS frames
- 3D/2D affine transformation and its parameter determination
- 3D/2D to 2D projective transformation and its parameter determination
- Molodensky transformation) Platform: |
Size: 805888 |
Author:wufan620
|
Hits: