Welcome![Sign In][Sign Up]
Location:
Search - contourlet feature extraction

Search list

[Special Effectscontourlet_toobox

Description: 图像特征提取的Contourlet变换工具包,可以设置分解层次,例如,三层分解提取17维特征,用于纹理图像或者SAR图像分割应用中-Image feature extraction toolbox of Contourlet transform, you can set the level of decomposition, for example, three level with 17-dimensional, for the segmentation on texture image or SAR Image
Platform: | Size: 71680 | Author: 苗晨 | Hits:

[OtherContourlet

Description: 针对医学图像数据库,提出一种新的基于纹理和形状的图像检索方法。非下采样Contourlet变换具有多尺度多分辨率 分析和平移不变性的特点,用来提取纹理特征。Zernike矩作为一种基于区域的形状描述子,具有良好的旋转不变性,用来提取 形状特征. 然后综合两种特征。对CT图像数据库进行检索实验,实验结果表明,该方法具有良好的检索性能,并具有平移、尺 度、旋转不变性。-Aiming atmedical image database, a novelmedical image retrieval algorithm based on texture and shape information is p roposed. The nonsubsamp led Contourlet transform p rovides a flexible multi2scale, multi2direction and shift2invariant image rep resentation. It is used for texture feature extraction. As a region2based shape descrip tor, Zernike moments have good rotation invariance. It is used to extract shape feature. Then, the two features are inte2 grated into image retrieval. A CT image database was retrieved using thismethod. Experimental results show that the new method has good retrieval performance and the p roperties of translation, scaling and rotation invariance. Key words: nonsubsamp led Contourlet transform Zernike moment texture extraction shape extraction
Platform: | Size: 397312 | Author: ll | Hits:

[Graph program37724107contourlet_toolbox

Description: contourlet纹理特征变化提取,有contourlet的详细分析过程-changes in texture feature extraction contourlet
Platform: | Size: 451584 | Author: 张涛 | Hits:

[Special EffectsNSCT

Description: 1.分析研究了基于内容的图像检索系统的工作原理,关键技术如:纹 理、形状等图像底层特征的描述方法, 图像间的相似性度量方法, 图像库索引机制等。 2.研究了基于纹理特征的图像检索方法,并提出了一种基于NSCT 变 换的纹理特征提取方法。通过对SAR 图像及相关图像进行NSCT 分解,计算不同尺度不同方向上的系数幅度序列的均值,标准方差 和三阶中心矩,以此构成特征向量来描述图像的纹理。实验证明本 文提出的采用NSCT 算法有较好的特征提取效果,引入三阶中心矩 作为特征向量优于只使用均值和方差的组合特征,提高了图像检索 的查准率。 3.研究了基于形状特征的图像检索方法,并提出一种基于NSCT变换 的形状特征提取方法。把改进型Canny算子和NSCT变换相结合,先 对SAR图像及相关图像运用改进型Canny算子提取边缘,在此基础 上再进行NSCT变换,把图像的形状信息分解到不同尺度不同方向 上,从而保留各个频率分量,减少了图像形状信息的丢失。-1. First we analyze and study the principle of image retrieval system and key techniques and algorithms of CBIR, such as the low-level feature descriptions including texture, shape, the similarity measure between images, the indexing methods and so on 2. Researching on the texture-based image retrieval algorithm, we propose an algorithm of texture feature extraction based on the Nonsubsampled Contourlet transform in this thesis. The image is decomposed by the Nonsubsampled Contourlet transform. The mean, standard deviation and third central moment of the magnitude of the Nonsubsampled Contourlet coefficients at different scales and directions are computed to extract the texture feature vector.Experiment proves the third central moment added in NSCT arithmetic is overperformded than only use the mean and standard deviation, and precision ratio has improved. 3. Researching on the shape-based image retrieval algorithm, we propose an algorithm of shape feature extraction bas
Platform: | Size: 401408 | Author: 周二牛 | Hits:

[Special Effectspcnnyixueyingyong

Description: 基于Contourlet变换和PCNN的CT图像椎体解剖轮廓特征提取方法的研究-Contourlet transform and PCNN based on CT images of vertebral anatomy contour feature extraction method
Platform: | Size: 2340864 | Author: 张弛 | Hits:

[Otherpxc3871260

Description: 人脸识别论文 An Efficient Method for Face Feature Extraction and Recognition based on Contourlet Transform and Principal Component Analysis using Neural Network -An Efficient Method for Face Feature Extraction and Recognition based on Contourlet Transform and Principal Component Analysis using Neural Network
Platform: | Size: 232448 | Author: 胡冲 | Hits:

[OtherCopy-of-GLCM

Description: Contourlet transform and feature extraction
Platform: | Size: 2921472 | Author: Sharmila | Hits:

[Special Effectsnsct_toolbox

Description: 非下采样contourlet是超小波的一种。具有多尺度和多方向性,解决了contourlet变换无平移不变性的缺陷。用于图纹理特征提取和图像融合的效果很好。(Non sampled contourlet is a kind of super wavelet. With multi-scale and multi directional, it solves the defect of Contourlet translation without translation invariance. For graph texture feature extraction and image fusion, the effect is very good.)
Platform: | Size: 99328 | Author: zxz | Hits:

CodeBus www.codebus.net