Location:
Search - correlation sum
Search list
Description: Type Classification Code [英汉计算机大词典] n.分类码 :main.m (program control)discretize.m (converts image to discrete values)plotimg.m (plots划分 images)dirImg.m (computes the directional image)extract.m (extracts square portion of image抽取块方向图 - called by dirImg) slitSum.m (computes the slit缝隙、剖面 sum direction - called by dirImg)tileImg.m (tiles平铺显示 the image and computes new directions)averImg.m (smoothes the image)angleImg.m (computes the angles from the vector representationvector representation n.向量表示 )Poincare.m (computes the core-delta points)temp.m (extracts the core-delta points and locations) Correlation相关、对比 Code:proj.m (program control)plotimg.m (plots images)discretize.m (converts image to discrete values)normalize.m (normalizes images)corrfft.m (computes the correlation)-Type Classification Code [computer English Dictionary] n. classification codes : main.m (program control) discretize.m (converts image to discrete values) plotimg.m (plots classified images) dirImg.m (computes the directional image) extract. m (extracts square image portion of the direction taken block map-called by dirImg) slitSum.m (computes the slit cracks, profile sum direction - called by dirImg) tileImg.m (smooth tiles show the image and computes new directions) averImg.m ( smooths the image) angleImg.m (computes the angles from the vector representationvector representation n. Vector) Poincare.m (computes the core-delta points) temp.m (extracts the core-delta points and locations) Correlation related contrast Code : proj.m (program control) plotimg.m (plots images) discretize.m (con
Platform: |
Size: 841 |
Author: 丰逸 |
Hits:
Description: Type Classification Code [英汉计算机大词典] n.分类码 :main.m (program control)discretize.m (converts image to discrete values)plotimg.m (plots划分 images)dirImg.m (computes the directional image)extract.m (extracts square portion of image抽取块方向图 - called by dirImg) slitSum.m (computes the slit缝隙、剖面 sum direction - called by dirImg)tileImg.m (tiles平铺显示 the image and computes new directions)averImg.m (smoothes the image)angleImg.m (computes the angles from the vector representationvector representation n.向量表示 )Poincare.m (computes the core-delta points)temp.m (extracts the core-delta points and locations) Correlation相关、对比 Code:proj.m (program control)plotimg.m (plots images)discretize.m (converts image to discrete values)normalize.m (normalizes images)corrfft.m (computes the correlation)-Type Classification Code [computer English Dictionary] n. classification codes : main.m (program control) discretize.m (converts image to discrete values) plotimg.m (plots classified images) dirImg.m (computes the directional image) extract. m (extracts square image portion of the direction taken block map-called by dirImg) slitSum.m (computes the slit cracks, profile sum direction- called by dirImg) tileImg.m (smooth tiles show the image and computes new directions) averImg.m ( smooths the image) angleImg.m (computes the angles from the vector representationvector representation n. Vector) Poincare.m (computes the core-delta points) temp.m (extracts the core-delta points and locations) Correlation related contrast Code : proj.m (program control) plotimg.m (plots images) discretize.m (con
Platform: |
Size: 1024 |
Author: 丰逸 |
Hits:
Description: !逐步回归分析程序:
! M:输入变量,M=N+1,其中N为自变量的个数;M包括的因变量个数
! K:输入变量,观测点数;
! F1:引入因子时显著性的F-分布值;
! F2:剔除因子时显著性的F-分布值;
! XX:存放自变量和因变量的平均值;
! B:存放回归系数;
! V:存放偏回归平方和和残差平方和Q;
! S:存放回归系数的标准偏差和估计的标准偏差;
! C:存放复相关系数;
! F:存放F-检验值;-! Stepwise regression analysis procedure:! M: input variables, M = N+ 1, in which N is the number of independent variables M, including the number of the dependent variable! K: input variables, observation points ! F1: when to introduce a significant factor of the F-distribution value ! F2: remove significant factor when the F-distribution value ! XX: storage self-variables and the dependent variable on average ! B: regression coefficient storage ! V: store partial regression sum of squares and residual sum of squares Q ! S: storage of the standard deviation of regression coefficients and the estimated standard deviation ! C: storage of multiple correlation coefficient ! F: storing F-test value
Platform: |
Size: 2048 |
Author: wang hanting |
Hits:
Description: 对随机变量以自变量的几组观测数据作多元线性回归(求得平均标准偏差,复相关系数和回归平方和)-Of random variables since the variables in several groups of observation data for multiple linear regression (obtained an average standard deviation, correlation coefficient and regression sum of squares)
Platform: |
Size: 1024 |
Author: fuxiao |
Hits:
Description: Relationship Between the Sum of Squared Difference (SSD)
and Cross Correlation for Template Matching
Konstantinos G. Derpanis
York University
kosta@cs.yorku.ca
Version 1.0
December 23, 2005
Platform: |
Size: 41984 |
Author: li |
Hits:
Description: Type Classification Code:
main.m (program control)
discretize.m (converts image to discrete values)
plotimg.m (plots images)
dirImg.m (computes the directional image)
extract.m (extracts square portion of image - called by dirImg)
slitSum.m (computes the slit sum direction - called by dirImg)
tileImg.m (tiles the image and computes new directions)
averImg.m (smoothes the image)
angleImg.m (computes the angles from the vector representation)
Poincare.m (computes the core-delta points)
temp.m (extracts the core-delta points and locations)
Correlation Code:
proj.m (program control)
plotimg.m (plots images)
discretize.m (converts image to discrete values)
normalize.m (normalizes images)
corrfft.m (computes the correlation)
--------------------------------------------------------------------------------
-Type Classification Code: main.m (program control) discretize.m (converts image to discrete values) plotimg.m (plots images) dirImg.m (computes the directional image) extract.m (extracts square portion of image- called by dirImg ) slitSum.m (computes the slit sum direction- called by dirImg) tileImg.m (tiles the image and computes new directions) averImg.m (smoothes the image) angleImg.m (computes the angles from the vector representation) Poincare.m (computes the core-delta points) temp.m (extracts the core-delta points and locations) Correlation Code: proj.m (program control) plotimg.m (plots images) discretize.m (converts image to discrete values) normalize. m (normalizes images) corrfft.m (computes the correlation )--------------------------------------------------------------------------------
Platform: |
Size: 6144 |
Author: 小熊 |
Hits:
Description: 基于互相关函数,采用求和广义互相关函数(summed-GCC)法用于机器人系统平台。由于采用不同的映射函数(mapping functions),GCC法在该平台下,只需三个麦克风即可进行三维定位,突破了基于TDOA法进行三维声源定位最少需4个麦克风的限制-Based on cross-correlation function, using generalized cross-correlation function sum (summed-GCC) method for the robot system platform. Because of using different mapping function (mapping functions), GCC method in the platform, the only three to three-dimensional microphone positioning, a breakthrough TDOA method based on three-dimensional sound localization will take at least four microphone restrictions
Platform: |
Size: 799744 |
Author: chen |
Hits:
Description: 通过MATLAB软件;通过仿真得出性能曲线;从而比较bpsk的性能-The bit-error rate (BER) of binary phase-shift keying
in Rayleigh fading, using the Alamouti transmission scheme and
receiver selection diversity in the presence of channel-estimation
error, is studied. Closed-form expressions for the BER of log-likelihood
ratio selection, signal-to-noise ratio (SNR) selection, switchand-
stay combining selection, and maximum ratio combining are
derived in terms of the SNR and the cross-correlation coefficient
of the channel gain and its corrupted estimate. Two new selection
schemes, space–time sum-of-squares combining selection diversity
and space–time sum-of-magnitudes selection diversity, are
proposed and proven to provide almost the same performance as
SNR selection, but with much simpler implementations. The effects
of channel-
Platform: |
Size: 340992 |
Author: 刘小洋 |
Hits:
Description: matching shape can be subdivided between two approaches: feature-based and template-based matching. The feature-based approach uses the features of the search and template image, such as edges or corners, as the primary match-measuring metrics to find the best matching location of the template in the source image. The template-based, or global, approach, uses the entire template, with generally a sum-comparing metric (using SAD, SSD, cross-correlation, etc.) that determines the best location by testing all or a sample of the viable test locations within the search image that the template image may match up to.
Platform: |
Size: 10481664 |
Author: gislam |
Hits:
Description: Blind, Adaptive Channel Shortening by Sum-squared Auto-correlation Minimization (SAM)," IEEE Trans. on Signal Processing, December 2003.
The two zip files below should be installed in parallel. -Blind, Adaptive Channel Shortening by Sum-squared Auto-correlation Minimization (SAM)," IEEE Trans. on Signal Processing, December 2003.
The two zip files below should be installed in parallel.
Platform: |
Size: 25600 |
Author: shreedhar |
Hits:
Description: 在这项工作中所使用的方法是基于一个由大卫阿诺德教程。
http://online.redwoods.cc.ca.us/instruct/darnold/diffeq/logistic/logistic.pdf
这将运行该Logistic.m带来了图形用户界面。
1。放弃在列的格式文本文件中的x值
2。放弃在山口格式文本文件中的y值
3。的阴谋初始 按钮将绘制的分布
4。 查找适合 按钮,会找到最适合
5。 重置 将删除的情节(虽然我想打扫所有的领域 -没有时间)
5。地下K,糖尿病在下列公式中的值
Ÿ 等于k/(1+进出口(- G *的(十型录)))
6。上证所给出了squred误差之间的拟合函数与实际数据的总和
7。消委会提供的相关合作关系的实际数据拟合功能和效率-The method used in this work is based on a tutorial by David Arnold.
http://online.redwoods.cc.ca.us/instruct/darnold/diffeq/logistic/logistic.pdf
RUN The Logistic.m this will bring up the GUI.
1. Give the x values on a text file in column format
2. Give the y values on a text file in col format
3. Plot Initial Button will plot the distribution
4. Find Fit button will find the best fit
5. Reset will remove the plot (Although I wanted to clean all the fields- did not have time)
5. K, G, Dm are the values in the following equation
y = K./(1+exp(-G*(x-Dm)))
6. SSE gives the sum of squred error between the fitted function and the actual data
7. CC give the correlation co-efficient between the fitted function and actual data
Platform: |
Size: 11264 |
Author: abeaqhax |
Hits:
Description: 采用模板匹配方法进行图像匹配,其中误差平方和测度经过归一化互相关处理。-Using template matching method for image matching, in which the error sum of squares measure through normalized cross correlation processing.
Platform: |
Size: 112640 |
Author: ZDJ |
Hits:
Description: Simulator
这是一个仿真程序文件夹下面有:
acorr
自相关
add
向量相加
convol
卷积
corr
互相关
dlms
自适应算法
hpassfir
高通FIR算法
lpassfir
低通算法
mmul
矩阵相乘
rfft
FFT算法实验
sin
这是一个产生正弦波数据的程
sub
向量相减
-Simulator is a simulation program folder below: acorr autocorrelation vector sum convol add corr correlation dlms convolution algorithm hpassfir adaptive algorithm lpassfir high-pass FIR low-pass algorithm mmul rfft FFT algorithm for matrix multiplication is an experiment which produces sin sine wave data sub vector subtraction process
Platform: |
Size: 1075200 |
Author: 醚 |
Hits:
Description: 这是模式识别中最小错误率Bayes分类器设计方案。
自行完善了在不同先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。
全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。
调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句,求得协方差矩阵;第四步通过协方差矩阵求得方差和相关系数,从而得到概率密度函数。
调用最小错误率贝叶斯分类器决策子函数时,根据先验概率数组,通过比较概率大小判断一个体重身高二维向量代表的人是男是女。
主函数第一步打开“MAIL.TXT”和“FEMALE.TXT”文件,并调用最大似然估计求取概率密度子函数,对分类器进行训练。第二步打开“test2.txt”,调用最小错误率贝叶斯分类器决策子函数,然后再将数组中逐一与已知性别的数据比较,就可以得到不同先验概率条件下错误率的统计。
-This is the minimum error rate pattern recognition Bayes classifier design.
Self- improvement prior probability in different conditions , male , female and total error rate error rate statistics , into which each array .
All programs from the main function , maximum likelihood estimation subroutine strike probability density , the minimum error rate Bayesian classifier composed of decision-making three subfunctions .
Strike called maximum likelihood estimate probability density subroutine , the first step to obtain the sample data , stored as a matrix the second step of the matrix, each row sum , and divided by the total number of samples N, be the average vector third step is to application of the formula ( 3-43 ) using matrix and loop control statements , obtain the covariance matrix fourth step through the variance-covariance matrix and correlation coefficient obtained , resulting in the probability density function .
Call the minimum error rate decision Functions Bayesian
Platform: |
Size: 4096 |
Author: 崔杉 |
Hits:
Description: 这是模式识别中最小风险Bayes分类器的设计方案。在参考例程的情况下,自行完善了在一定先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。
全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。
调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句,求得协方差矩阵;第四步通过协方差矩阵求得方差和相关系数,从而得到概率密度函数。
调用最小风险贝叶斯分类器决策子函数时,根据先验概率,再根据自行给出的5*5的决策表,通过比较概率大小判断一个体重身高二维向量代表的人是男是女,放入决策数组中。
主函数第一步打开“MAIL.TXT”和“FEMALE.TXT”文件,并调用最大似然估计求取概率密度子函数,对分类器进行训练。第二步打开“test2.txt”,调用最小风险贝叶斯分类器决策子函数,然后再将数组中逐一与已知性别的数据比较,就可以得到在一定先验概率条件下,决策表中不同决策的错误率的统计。
-This is a pattern recognition classifier minimum risk Bayes design .In reference to the case of routine , self- improvement in a certain a priori probability conditions, male , female and total error rate error rate statistics , into which each array .
All programs from the main function , maximum likelihood estimation subroutine strike probability density , the minimum error rate Bayesian classifier composed of decision-making three subfunctions .
Strike called maximum likelihood estimate probability density subroutine , the first step to obtain the sample data , stored as a matrix the second step of the matrix, each row sum , and divided by the total number of samples N, be the average vector The third step is the application of the formula ( 3-43 ) using matrix and loop control statements , obtain the covariance matrix fourth step through the variance-covariance matrix and correlation coefficient obtained , resulting in the probability density function .
Bayesian classifier
Platform: |
Size: 4096 |
Author: 崔杉 |
Hits:
Description: a method to calculate the sum of square differenes using the normalised fft cross correlation
Platform: |
Size: 1024 |
Author: steven woolford |
Hits:
Description: 对随机变量以自变量的几组观测数据作多元线性回回归(求的平均标准偏差,复相关系数与回归平方与)
-Argument of several sets of observational data for the multiple linear regression (ask the average standard deviation of the random variable, the multiple correlation coefficient and regression sum of squares)
Platform: |
Size: 1024 |
Author: 认可 |
Hits:
Description: 1.产生正弦信号,方波信号,均匀噪声;
2.信号的叠加;
3.信号的相关分析;
4.信号的卷积;
5.信号的和;
6.信号的频谱图。-1. Generate sine signal, square wave signals, uniform noise
2. Signal superposition
3. The signal correlation analysis
4. The convolution of signal
5. The sum of signal
6. The signal spectrum.
Platform: |
Size: 1024 |
Author: 刘伟 |
Hits:
Description: Advanced correlation filter synthesis algorithms to achieve rotation invariance are described. We use a specified form for the filter as the rotation invariance constraint and derive a general closed-form solution for a multiclass rotation-invariant filter that can recognize a number of different objects. By requiring the filter to minimize the average correlation plane energy, we produce a multiclass rotation invariant (RI) RI-MACE filter, which controls correlation plane sidelobes and improves discrimination against false targets. To improve noise performance, we require the filter to minimize a weighted sum of correlation plane signal and noise energy. Initial test results of all filters are provided
Platform: |
Size: 45056 |
Author: dhamey |
Hits:
Description: Function-Compute Correlation between two images using the similarity measure of Sum of Squared Differences (SSD) with Right Image
Platform: |
Size: 1024 |
Author: aliveli |
Hits: