Welcome![Sign In][Sign Up]
Location:
Search - db10 wavelet

Search list

[Other resourcedb-wavelet

Description: Matlab环境下利用Daubechies小波族中的db10小波对散斑退化图像进行了压缩数值仿真研究。研究表明:阈值以及分解层次的选取影响着图像压缩的质量。-Matlab environment using Daubechies wavelet tribal db10 wavelet the withdrawal of speckle image compression for the numerical simulation. Research shows : the threshold level of decomposition is influenced by the quality of image compression.
Platform: | Size: 4264 | Author: | Hits:

[Waveletdb-wavelet

Description: Matlab环境下利用Daubechies小波族中的db10小波对散斑退化图像进行了压缩数值仿真研究。研究表明:阈值以及分解层次的选取影响着图像压缩的质量。-Matlab environment using Daubechies wavelet tribal db10 wavelet the withdrawal of speckle image compression for the numerical simulation. Research shows : the threshold level of decomposition is influenced by the quality of image compression.
Platform: | Size: 4096 | Author: | Hits:

[Waveletwave

Description: 小波滤波的MALLAT算法,程序编写的很容易懂,能实现bd1-db10的小波分解和重构,比我前一次发的小波算法更简单易懂-Wavelet filtering MALLAT algorithm, programming is very easy to understand, to achieve bd1-db10 wavelet decomposition and reconstruction, than I made the previous wavelet algorithm is more straightforward
Platform: | Size: 3072 | Author: 李维付 | Hits:

[source in ebookwavelettransformation

Description: 选择db10 小波和db10 小波两个小波函数实现了小波变换-Choose two db10 wavelet and wavelet db10 wavelet function implementation of wavelet transform
Platform: | Size: 45056 | Author: 紫瓶 | Hits:

[Graph programhh

Description: 用haar和db10小波分解重构图像,实现阈值消噪-Haar, and db10 wavelet decomposition with the reconstructed image to achieve the threshold de-noising
Platform: | Size: 1024 | Author: 冯杰 | Hits:

[Wavelethaardb10

Description: haar和db10小波分解重构图像 haar和db10小波分解重构图像-haar and db10 wavelet decomposition of the reconstructed image and db10 haar haar wavelet decomposition of the reconstructed image and db10 wavelet decomposition of the reconstructed image
Platform: | Size: 1024 | Author: 刘飞 | Hits:

[Compress-Decompress algrithmsxiaobo_matlab

Description: 此示意程序用DWT实现二维小波变换 1.调原始图像矩阵load wbarb 2.进行二维小波分解l=wfilters( db10 , l ) 3.分解结果显示figure(1) -This indicated procedures used to achieve two-dimensional wavelet transform DWT 1. Emphasized the original image matrix load wbarb 2. For two-dimensional wavelet decomposition l = wfilters (' db10' , ' l' ) 3. Decomposition results figure (1)
Platform: | Size: 2048 | Author: zhao long | Hits:

[matlabxiaobosuanfa

Description: 采样频率 fs=10000 轴承外环故障信号 fid=fopen( bearingout.dat , r ) 故障 N=1024 xdata=fread(fid,N, int16 ) fclose(fid) xdata=(xdata-mean(xdata))/std(xdata,1) 时域波形 figure(1) plot(1:N,xdata) xlabel( 时间 t/n ) ylabel( 电压 V/v ) db10小波进行4层分解 一维小波分解 [c,l] = wavedec(xdata,4, db10 ) 重构第1~4层细节信号 d4 = wrcoef( d ,c,l, db10 ,4) d3 = wrcoef( d ,c,l, db10 ,3) d2 = wrcoef( d ,c,l, db10 ,2) d1 = wrcoef( d ,c,l, db10 ,1) - Sampling frequency fs = 10000 bearing outer ring fault signal fid = fopen (' bearingout.dat' , ' r' ) failure N = 1024 xdata = fread (fid, N, ' int16' ) fclose (fid ) xdata = (xdata-mean (xdata))/std (xdata, 1) time-domain waveform figure (1) plot (1: N, xdata) xlabel (' Time t/n' ) ylabel ( ' voltage V/v' ) db10 wavelet decomposition 4 layer one-dimensional wavelet decomposition [c, l] = wavedec (xdata, 4, ' db10' ) 1 ~ 4 reconstructed detail signal d4 = wrcoef (' d' , c, l, ' db10' , 4) d3 = wrcoef (' d' , c, l, ' db10' , 3) d2 = wrcoef (' d' , c, l, ' db10' , 2) d1 = wrcoef (' d' , c, l, ' db10' , 1)
Platform: | Size: 1024 | Author: 王飞 | Hits:

[WaveletDiscrete-Wavelet-Transform-MATLAB

Description: 离散小波的MATLAB计算程序,采用db10小波进行水位数据序列的离散化-code for discrete wavelet transform in MATLAB
Platform: | Size: 1024 | Author: 余世鹏 | Hits:

[Special Effectsdb10X

Description: 本程序实现二维张量db10小波的图像基提取,并试图提取试验图像所对应的基-Mr Keelty to take this program to achieve the two-dimensional tensor db10 wavelet image, and tried to extract the test image corresponding to the base
Platform: | Size: 2048 | Author: gaoxiangyang | Hits:

[Waveletdb10

Description: 小波基为db的小波变换,可以提取输入图像的小波特征,低频高频的信息,然后得到特征后用于分类或识别-Wavelet transform is a wavelet transform, which can extract the wavelet features of the input image, low frequency and high frequency information, and then get the feature for classification or recognition
Platform: | Size: 87040 | Author: Heny | Hits:

CodeBus www.codebus.net