Welcome![Sign In][Sign Up]
Location:
Search - decision tree simulation

Search list

[Other resourceprojet

Description: 一个模拟weka的系统,输入文件格式和weka的一样,实现决策树的分析以及通过数据挖掘整理规则集合,很值得新手学习-a simulation system, the importation of files and weka, the same realization of the decision tree analysis and data mining collated by the rules set, is worth learning newcomers
Platform: | Size: 38576 | Author: 郑磊 | Hits:

[AI-NN-PRprojet

Description: 一个模拟weka的系统,输入文件格式和weka的一样,实现决策树的分析以及通过数据挖掘整理规则集合,很值得新手学习-a simulation system, the importation of files and weka, the same realization of the decision tree analysis and data mining collated by the rules set, is worth learning newcomers
Platform: | Size: 37888 | Author: 郑磊 | Hits:

[Otherwajue

Description: 利用VC++实现决策树分类算法,已经测试过!可用-Use VC++ Realize the decision tree classification algorithm has been tested! Available
Platform: | Size: 928768 | Author: | Hits:

[Other Databases2007010238

Description: 基于决策树和贝叶斯的预测分析器,可以对数据库中的数据集通过训练学习后根据训练结果进行信息预测。-Based on Decision Tree and Bayesian prediction of the analyzer can be in the database data sets through training to learn the results after the training information in accordance with prediction.
Platform: | Size: 3811328 | Author: 季芳 | Hits:

[Windows DevelopID3_src

Description: 数据挖掘决策树ID3算法原理 适用数据挖掘的模拟测试-ID3 decision tree data mining applies data mining algorithm simulation tests
Platform: | Size: 4096 | Author: 李弈 | Hits:

[AI-NN-PRDT

Description: 决策树算法的详细介绍和例子,希望有用-A detailed description of decision tree algorithm and examples, I hope useful
Platform: | Size: 113664 | Author: tang yang | Hits:

[Mathimatics-Numerical algorithmsc4.5

Description: 决策树c4.5算法的c++实现 希望对大家有用-C4.5 decision tree algorithm c++ to achieve useful for all of us hope
Platform: | Size: 2597888 | Author: fanglixia | Hits:

[Program docjcsb

Description: 文中研究了6种常用数字调制信号识别的特征参数集,并采用决策树判别方法进行分类识别。仿真结果表明,在SNR≥5dB时,识别正确率在99 以上,且当SNR≥20dB时,识别正确率达到100 。其特点是,算法简单,识别正确率高,达到了自动分类识别的目的,并有利于实现识别的实时化。-In this paper, we study the set of characteristic parameters of the six kinds of commonly used digital modulation signal recognition, and decision tree method for classification. The simulation results show that SNR 鈮� 5dB, the correct rate more than 99 , and when SNR 鈮� 20dB, the correct rate of 100 . Which is characterized by simple algorithm to identify the correct rate, to achieve the purpose of automatic classification and recognition, and help to identify real-time.
Platform: | Size: 83968 | Author: miller | Hits:

CodeBus www.codebus.net